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Notations:
If x is complex, < (x) and = (x) denote, respectively, the real and imaginary parts of x.
〈x, y〉 denotes the inner product of x and y.

1 Background

Fourier analysis is important in modeling and solving partial differential equations related to boundary
and initial value problems of mechanics, heat flow, electrostatics, and other fields.

1.1 Periodic functions

A function f(x) is called periodic if f(x) is defined for all real x, except possibly at some points, and
if there is some positive number p, called a period of f(x), such that

f (x+ p) = f (x)

Remark 1. If p is a period of f(x), then clearly 2p, 3p, . . . are also periods of f (x).

The smallest positive period is called the fundamental period.

1.2 Orthogonal decomposition

In vector spaces equipped with inner products, we have the following essential theorem.

Theorem 2. Suppose {e1, e2, . . . , en} is an orthogonal basis of a vector space V. Then for every
v ∈ V, we have

v =
〈v, e1〉
〈e1, e1〉

e1 + · · ·+ 〈v, en〉
〈en, en〉

en

or, by using the norm notation,

v =
〈v, e1〉
||e1||2

e1 + · · ·+ 〈v, en〉
||en||2

en

Proof. Let v ∈ V. Because {e1, e2, . . . , en} is a basis, there exists scalars α1, . . . , αn such that

v = α1e1 + · · ·+ αnen

Taking the inner product with ej (j = 1, . . . , n) yields

〈v, ej〉 = 〈α1e1 + · · ·+ αnen, ej〉 = α1 〈e1, ej〉+ · · ·+ αn 〈en, ej〉

But the basis is orthogonal, hence 〈ei, ej〉 = 0 if i 6= j. This yields

〈α1e1 + · · ·+ αnen, ej〉 = αj 〈ej, ej〉
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and thus
〈v, ej〉 = αj 〈ej, ej〉 ⇐⇒ αj =

〈v, ej〉
〈ej, ej〉

Recall that we have the following fact.

Fact (Inner product for functions, function spaces). The set of all real-valued continuous functions
f (x), g (x), . . . x ∈ [α, β] is a real vector space under the usual addition of functions and multiplication
by scalars. An inner product on this function space is

〈f, g〉 =

∫ β

α

f (x) g (x) dx

and the norm of f is

||f (x) || =

√∫ β

α

f (x)2 dx

As a very useful special case, the trigonometric system is a function space with orthogonal basis
{sinnx, cosnx, 1}∞n=1. To check, we first notice that the functions are all periodic with period 2π. The
inner product in this case is

〈f, g〉 =

∫ π

−π
f (x) g (x) dx

Noting that, by checking the area under the graphs and noting the shape of sine and cosine functions,
we have ∫ π

−π
cosnxdx = 0, ∀n = 1, 2, . . . (1)∫ π

−π
sinnxdx = 0, ∀n = 1, 2, . . .

This confirms the orthogonality between 1 and sinnx or cosnx. Furthermore, using (1) we immediately
know

〈cosnx, cosmx〉 =

∫ π

−π
cosnx cosmxdx =

∫ π

−π

cos (n+m)x+ cos (n−m)x

2
dx

=
1

2

∫ π

−π
cos (n+m)xdx+

1

2

∫ π

−π
cos (n−m)xdx

= 0 + 0 as long as n 6= m

namely, cosnx and cosmx are orthogonal if m 6= n.
Similarly, as long as n 6= m (by assumption, both m and n are positive integers), sinnx and sinmx

are orthogonal. This is because

〈sinnx, sinmx〉 =

∫ π

−π
sinnx sinmxdx =

∫ π

−π

cos (n−m)x− cos (n+m)x

2
dx = 0
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Furthermore, regardless of the values of m and n, we have

〈sinnx, cosmx〉 =

∫ π

−π
sinnx cosmxdx =

∫ π

−π

sin (n+m)x+ sin (n−m)x

2
dx = 0

So sinnx and cosmx are always orthogonal.
Sketch the plots of sine and cosine functions. You should find the above results intuitive.
To perform the orthogonal decomposition under the trigonometric system, we need just one more

thing–the norms of the basis functions. They are

|| sinnx||2 = 〈sinnx, sinnx〉 =

∫ π

−π
(sinnx)2 dx =

∫ π

−π

1− cos 2nx

2
dx = π

|| cosnx||2 =

∫ π

−π
(cosnx)2 dx =

∫ π

−π

cos 2nx+ 1

2
dx = π

||1||2 =

∫ π

−π
1dx = 2π

2 Fourier series

Fourier series is an extension of the orthogonal decomposition reviewed in the last section. Under the
trigonometric system, the orthogonal decomposition of a function f (x)—provided that the decompo-
sition exists (we will talk about the existence very soon)—is

f (x) = a0 +
∞∑
n=1

(an cosnx+ bn sinnx) (2)

where
a0 =

〈f (x) , 1〉
〈1, 1〉

=
1

2π

∫ π

−π
f (x) dx (3)

and

an =
〈f (x) , cosnx〉
〈cosnx, cosnx〉

=
1

π

∫ π

−π
f (x) cosnxdx, bn =

〈f (x) , sinnx〉
〈sinnx, sinnx〉

=
1

π

∫ π

−π
f (x) sinnxdx (4)

(2) is called the Fourier series of f (x). (3) and (4) are called the corresponding Fourier coefficients.

Example 3. Find the Fourier coefficients of

f (x) =

{
−k if − π < x < 0

k if 0 < x < π
, and f (x+ 2π) = f (x)

Such functions occur as external forces acting on mechanical systems, electromotive forces in electric
circuits, etc.
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(Solution:

f (x) =
4k

π

(
sinx+

1

3
sin 3x+

1

5
sin 5x+ . . .

)
)

Theorem 4 (Existance of Fourier Series). Let f (x) be periodic with period 2π and piecewise continuous
in the interval −π ≤ x ≤ π. Furthermore, let f (x) have a left-hand derivative and a right-hand
derivative at each point of that interval. Then the Fourier series of f (x) converges. Its sum is f (x),
except at points xo where f (x) is discontinuous. There the sum of the series is the average of the left-
and right-hand limits of f (x) at xo.

Hence a periodic function f (x) = f (x+ 2π) with

f (x) = 1/x, x ∈ [−π, π]

does not have a Fourier series extension, as it does not have a left- or right-hand derivative at x = 0.
A discontinuous periodic function, with period 2π and

f (x) =

{
1, −π < x < 0

−1, π > x ≥ 0

is piecewise continuous. At x = 0, it has a left-hand derivative of 0 and a right-hand derivative of 0.
Hence the function has a Fourier series expansion.

2.1 Arbitrary period

The transition from period 2π to period p = 2L can be done by a suitable change of scale. If f (x) has
a period 2L, we let

v =
x

L
π

You can see, that x = ±L corresponds to v = ±π. So

f (x) = f

(
L

π
v

)
is periodic in v with period 2π.

Now forget about f (x). Focus just on the new f
(
L
π
v
)
with period 2π. The Fourier series is

f

(
L

π
v

)
= a0 +

∞∑
n=1

(an cosnv + bn sinnv)

where

a0 =
1

2π

∫ π

−π
f

(
L

π
v

)
dv, an =

1

π

∫ π

−π
f

(
L

π
v

)
cosnvdv, bn =

1

π

∫ π

−π
f

(
L

π
v

)
sinnvdv (5)

4
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Changing back to the x notation, by using

f (x) = f

(
L

π
v

)
, v =

x

L
π, dv =

π

L
dx

we have

f (x) = a0 +
∞∑
n=1

(
an cos

nπ

L
x+ bn sin

nπ

L
x
)

(6)

with

a0 =
1

2L

∫ L

−L
f (x) dx, an =

1

L

∫ L

−L
f (x) cos

nπ

L
xdx, bn =

1

L

∫ L

−L
f (x) sin

nπ

L
xdx (7)

Example 5. Find the Fourier series of

f (x) =


0 if − 2 < x < −1

k if − 1 < x < 1

0 if 1 < x < 2

, p = 2L = 4, L = 2

Answer:

f (x) =
k

2
+

2k

π

(
cos

π

2
x− 1

3
cos

3π

2
x+

1

5
cos

5π

2
x−+ . . .

)

2.2 Even and odd functions

It turns out that, if f(x) is even or odd, the Fourier series can be significantly simplified. This is
because, if f (x) is an even function, then∫ L

−L
f (x) sinnxdx = 0

as the integral of any odd function is zero. Hence in (7) bn = 0 so that (6) simplifies to

f (x) = a0 +
∞∑
n=1

an cos
nπ

L
x

Furthermore, since f (x) is even, we have

a0 =
1

2L

∫ L

−L
f (x) dx =

1

L

∫ L

0

f (x) dx, an =
1

L

∫ L

−L
f (x) cos

nπ

L
xdx =

2

L

∫ L

0

f (x) cos
nπ

L
xdx

Similarly, if f (x) is an odd function, then∫ L

−L
f (x) cosnxdx = 0

5
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and

f (x) =
∞∑
n=1

bn sin
nπ

L
x, bn =

2

L

∫ L

0

f (x) sin
nπ

L
xdx

The following Theorem is intuitive and very useful.

Theorem 6. The Fourier series of a sum f1 +f2 are the sums of the corresponding Fourier coefficients
of f1 and f2. The Fourier coefficients of cf are c times the corresponding Fourier coefficients of f .

Here is one example of using the results in this subsection.

Example 7 (Sawtooth wave). Find the Fourier series of the function

f (x) = x+ π if − π < x < π and f (x+ 2π) = f (x)

The basic idea is to decompose the function as

f (x) = f1 (x) + f2 (x) , f1 (x) = x, f2 (x) = π

f1 (x) is an odd function; f2 (x) is an even function. Their Fourier coefficients are simpler to find.

2.3 Application example: ODE with special inputs

Consider a mass spring damper system

m
d2

dt2
y + b

d

dt
y + ky = r (t)

We have learned how to solve the nonhomogeneous ODE if r (t) is a standard function such as sine,
cosine, power functions. Difficulty arises if r (t) is not a smooth function such as

r (t) =

{
t+ π

2
if − π < t < 0

−t+ π
2

if 0 < t < π
, r (t+ 2π) = r (t)

We can solve the problem by decomposing r (t) as a Fourier series and then use linearity of the ODE
to obtain the solution. The solution is actually very interesting. For the case of

d2

dt2
y + 0.05

d

dt
y + 25y = r (t)

the solution looks like that in Fig. 1.

6
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494 CHAP. 11 Fourier Analysis

1. Coefficients . Derive the formula for from 
and 

2. Change of spring and damping. In Example 1, what
happens to the amplitudes if we take a stiffer spring,
say, of ? If we increase the damping?

3. Phase shift. Explain the role of the ’s. What happens
if we let ?

4. Differentiation of input. In Example 1, what happens
if we replace with its derivative, the rectangular wave?
What is the ratio of the new to the old ones?

5. Sign of coefficients. Some of the in Example 1 are
positive, some negative. All are positive. Is this
physically understandable?

6–11 GENERAL SOLUTION
Find a general solution of the ODE with

as given. Show the details of your work.
6.
7.
8. Rectifier. and

9. What kind of solution is excluded in Prob. 8 by
?

10. Rectifier. and

11.

12. CAS Program. Write a program for solving the ODE
just considered and for jointly graphing input and output
of an initial value problem involving that ODE. Apply

r (t) ! b"1 if "p # t # 0

1 if 0 # t # p,
 ƒv ƒ $ 1, 3, 5, Á

r (t % 2p) ! r (t), ƒv ƒ $ 0, 2, 4, Á
r (t) ! p/4 ƒ sin t ƒ  if 0 # t # 2p

ƒv ƒ $ 0, 2, 4, Á

r (t % 2p) ! r (t), ƒv ƒ $ 0, 2, 4, Á
r (t) ! p/4 ƒ cos t ƒ  if "p # t # p

r (t) !  sin t, v ! 0.5, 0.9, 1.1, 1.5, 10
r (t) ! sin at % sin bt, v2 $ a2, b2

r (t)
ys % v2y ! r (t)

Bn

An

Cn

r (t)

c : 0
Bn

k ! 49
Cn

Bn.
AnCnCn the program to Probs. 7 and 11 with initial values of your

choice.

13–16 STEADY-STATE DAMPED OSCILLATIONS
Find the steady-state oscillations of 
with and as given. Note that the spring constant
is . Show the details. In Probs. 14–16 sketch .

13.

14.

15.

16.

17–19 RLC-CIRCUIT
Find the steady-state current in the RLC-circuit in
Fig. 275, where F and with

V as follows and periodic with period . Graph or
sketch the first four partial sums. Note that the coefficients
of the solution decrease rapidly. Hint. Remember that the
ODE contains , not , cf. Sec. 2.9.

17. E (t) ! b"50t 2 if "p # t # 0

50t 2 if 0 # t # p

E (t)Er(t)

2pE (t)
R ! 10 &,  L ! 1 H, C ! 10!1

I (t)

e t if "p>2 # t # p>2
p " t if p>2 # t # 3p>2 and r (t % 2p) ! r (t)

r (t) !

r (t % 2p) ! r (t)
r (t) ! t (p2 " t 2) if "p # t # p and

r (t) ! b"1 if "p# t # 0

1 if 0 # t #p
 and r (t % 2p) ! r (t)

r (t) ! a
N

n!1

(an cos nt % bn sin nt)

r (t)k ! 1
r (t)c ' 0

ys % cyr % y ! r (t)

P R O B L E M  S E T 1 1 . 3

y

t0 1 2 3–1–2–3

0.1

–0.1

–0.2

0.2

0.3

Output

Input

Fig. 277. Input and steady-state output in Example 1 
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Figure 1: Fig. 277 from [EK]

3 Complex Fourier series

Instead of sin and cos functions, we can use {ejnx}∞j=−∞ as the (complex) basis for Fourier series. For
better physical intuitions, we usually write n = ωsl. The formula for Fourier series (when it exists) is

f (x) =
∞∑

l=−∞

〈
f (x) , ejωslx

〉
〈ejωslx, ejωslx〉

ejωslx (8)

Fact (Inner product for complex functions). The set of all complex-valued continuous functions f (x),
g (x), . . . x ∈ [α, β] is a complex vector space under the usual addition of functions and multiplication
by scalars. An inner product on this function space is

〈g, f〉 =

∫ β

α

g (x)f (x) dx

and the norm of f is

||f (x) || =
√
〈f, f〉 =

√∫ β

α

|f (x)|2 dx

Fact 8. ejωslx has a norm of
√
Ts =

√
2π/ωs

Proof. By definition

||ejωslx|| =
√
〈ejωslx, ejωslx〉 =

√∫ Ts/2

−Ts/2
|ejωslx|2 dx =

√∫ Ts/2

−Ts/2
dx =

√
Ts

The Fourier series expansion (8) hence simplifies to

f (x) =
1

Ts

∞∑
l=−∞

〈
f (x) , ejωslx

〉
ejωslx

7
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Example 9 (Fourier series of an impulse train). Show that

∞∑
l=−∞

δ (t− lTs) =
1

Ts

∞∑
l=∞

ejωslt, ωs =
2π

Ts

where δ (x) is the Kronecker-delta function satisfying δ (x) = 1 if x = 0 and δ (x) = 0 otherwise.∑∞
l=−∞ δ (t− lTs) is periodic with period Ts. You can check that ejωst also has a period of Ts if

ωs = 2π/Ts.
For the Fourier coefficients, we have

〈
f (t) , ejωslt

〉
=

∫ Ts/2

−Ts/2
δ (t) ejωsltdt = 1

Hence
∞∑

l=−∞

δ (t− lTs) =
1

Ts

∞∑
l=−∞

〈
f (x) , ejωslt

〉
ejωslt =

1

Ts

∞∑
l=∞

ejωslt, ωs =
2π

Ts

4 Fourier integral

What can be done to extend the method of Fourier series to nonperiodic functions? This is the idea of
“Fourier integrals.”

Let us consider an example of

f(x) =

{
1 if −1 < x < −1

0 otherwise
(9)

This is not a periodic function. Construct a rectangular wave

fL(x) =


0 if −L < x < −1

1 if −1 < x < −1

0 if 1 < x < L

, fL (x+ 2L) = fL(x)

We are going to make L increase from some small numbers to infinity, which recovers (9).
The function is even. The Fourier coefficients are

a0 =
1

2L

∫ 1

−1
dx =

1

L
, an =

1

L

∫ 1

−1
cos

nπx

L
dx =

2

L

∫ 1

0

cos
nπx

L
dx =

2

L

sin (nπ/L)

nπ/L

As L increases, the frequency of sin (nπ/L) increases.
More generally, consider any periodic function fL (x) of period 2L that can be represented by

fL (x) = a0 +
∞∑
n=1

[an cosωnx+ bn sinωnx] , ωn =
nπ

L

8
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where

a0 =
1

2L

∫ L

−L
f (x) dx, an =

1

L

∫ L

−L
f (x) cos

nπ

L
xdx, bn =

1

L

∫ L

−L
f (x) sin

nπ

L
xdx

or, in the notation of the newly introduced ωn = nπ/L:

fL (x) =
1

2L

∫ L

−L
fL (v) dv +

1

L

∞∑
n=1

[
cosωnx

∫ L

−L
fL (v) cosωnvdv + sinωnx

∫ L

−L
fL (v) cosωnvdv

]
(10)

Notice that if we define
∆ω = ωn+1 − ωn =

π

L
⇒ 1

L
=

∆ω

π
then (10) is actually

fL (x) =
1

2L

∫ L

−L
fL (v) dv

+
1

π

∞∑
n=1

[
∆ω cos (ωnx)

∫ L

−L
fL (v) cosωnvdv + ∆ω sin (ωnx)

∫ L

−L
fL (v) cosωnvdv

]
(11)

We want to have an understanding of the case when L→∞. Assume that f (x) = limL→∞ fL (x)
is absolutely integrable, i.e. the following finite limit exists

lim
a→−∞

∫ 0

a

|f (x)| dx+ lim
b→∞

∫ b

0

|f (x)| dx

Then

lim
L→∞

1

2L

∫ L

−L
fL (v) dv = 0

Let g (ω) = cos (ωx)
∫ L
−L fL (v) cosωvdv. The first summation in (11) is

∞∑
n=1

∆ωg (ωn) = g (ω1) ∆ω + g (ω2) ∆ω + . . .

As ∆ω = π/L→ 0 if L→∞, the last term in (11) thus looks like an integration

f (x) =
1

π

∫ ∞
0

[
cosωx

∫ ∞
−∞

f (v) cosωvdv + sinωx

∫ ∞
−∞

f (v) cosωvdv

]
dω

Letting

A (ω) =
1

π

∫ ∞
−∞

f (v) cosωvdv, B (w) =
1

π

∫ ∞
−∞

f (v) sinωvdv

yields

f (x) =

∫ ∞
0

[A (ω) cosωx+B (ω) sinωx] dω

This is called a representation of f (x) (no longer periodic) by a Fourier integral.

9



X. Chen Fourier Analysis September 29, 2019

Remark 10. The above construction is only an intuition. Nonetheless, the conclusion is correct.

Theorem 11 (Existance of Fourier Integral). If f (x) is piecewise continuous in every finite interval
and has a right hand derivative and a left-hand derivative at every point and if the integral

lim
a→−∞

∫ 0

a

|f (x)| dx+ lim
b→∞

∫ b

0

|f (x)| dx

exists, then f (x) can be represented by a Fourier integral

f (x) =

∫ ∞
0

[A (ω) cosωx+B (ω) sinωx] dω (12)

with

A (ω) =
1

π

∫ ∞
−∞

f (v) cosωvdv, B (w) =
1

π

∫ ∞
−∞

f (v) sinωvdv (13)

At a point where f (x) is discontinuous the value of the Fourier integral equals the average of the left-
and right-hand limits of f (x) at that point.

5 Fourier transform

With the Fourier integral formulas (12)-(13), we have

f (x) =

∫ ∞
0

[A (ω) cosωx+B (ω) sinωx] dω

=
1

π

∫ ∞
0

∫ ∞
−∞

f (v) [cos (ωv) cos (ωx) + sin (ωv) sin (ωx)] dvdω

=
1

π

∫ ∞
0

[∫ ∞
−∞

f (v) cos (ωx− ωv) dv

]
dω

Note that
∫∞
−∞ f (v) cos (ωx− ωv) dv is even in ω. Hence

1

π

∫ ∞
0

[∫ ∞
−∞

f (v) cos (ωx− ωv) dv

]
dω =

1

2π

∫ ∞
−∞

[∫ ∞
−∞

f (v) cos (ωx− ωv) dv

]
dω

To simplify the equations, we add an integral term that equals 0:

1

2π

∫ ∞
−∞

[∫ ∞
−∞

f (v) i sin (ωx− ωv) dv

]
dω = 0, i =

√
−1

where the equality comes from the fact that
∫∞
−∞ f (v) sin (ωx− ωv) dv is an odd function of ω.

Adding up the last two equations gives

f (x) =
1

2π

∫ ∞
−∞

[∫ ∞
−∞

f (v) eiω(x−v)dv

]
dω = 0

10
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or, equivalently

f (x) =
1√
2π

∫ ∞
−∞

F (ω) eiωxdω

F (ω) =
1√
2π

∫ ∞
−∞

f (v) e−iωvdv =
1√
2π

∫ ∞
−∞

f (x) e−iωxdx

F (ω) is called the Fourier transform of f (x); f (x) is the inverse Fourier transform of F (ω). The
above are often denoted as:

F (ω) = F (f (x)) , f (x) = F−1 (F (ω))

Remark 12. Many people prefer to use a different normalization coefficient, and write:

f (x)=

∫ ∞
−∞

F (ω) eiωxdω

F (ω)=
1

2π

∫ ∞
−∞

f (x) e−iωxdx

Theorem 13 (Existance of Fourier transform). If f (x) is absolutely integrable on the x-axis and
piecewise continuous on every finite interval, then the Fourier transform of f (x) exists.

Example 14. Find the Fourier transform of

f (x) =

{
1, |x| < 1

0, otherwise

Solution: By definition

F (ω) =
1√
2π

∫ 1

−1
e−iωxdx =

1

−iω
√

2π

(
e−iω − eiω

)
=

√
π

2

sinω

ω

6 *Discrete Fourier analysis

Fourier series (FS) and Fourier transforms (FT) apply only to continuous-time functions. Discrete
Fourier series (DFS) and discrete Fourier transform (DFT) are their discrete versions when the function
f (x) is defined at finitely many points. The main equations are summarized below. You can find the
strong analogy between FS and DFS; as well as FT and DFT. For more details, see the reference [AO].

6.1 Discrete Fourier series

A periodic bounded discrete sequence x̃ [n] has a discrete Fourier series (DFS) expansion

x̃[n] =
1

N

N−1∑
k=0

X̃[k]ej
2π
N
nk (14)

11
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where the unnormalized DFS coefficients are

X̃[k] =
N−1∑
n=0

x̃[n]e−j
2π
N
nk (15)

DFS properties Let x̃ [n] and X̃ [k] be defined as in (14) and (15). Then

Sequence DFS coefficient

x̃[n] ˜X[k]

x̃[n−m] e−j
2π
N
kmX̃[k]

ej
2π
N
nlx̃[n] X̃[k − l]

x̃3[n] =
∑N−1

m=0 x̃1[m]x̃2[n−m] X̃3[k] = X̃1[k] · X̃2[k]

X̃ [n] Nx̃[−k] (duality)

6.2 Discrete-time Fourier transform (DTFT)

A bounded infinite sequence x [n] can be decomposed as

x[n] =
1

2π

π∫
−π

X(ejω)ejωndω

where X(ejω) is called the DTFT of x [n] and is defined as

X(ejω) =
∞∑

k=−∞

x[k]e−jωk

Let x∗ [n] denote the complex conjugate sequence of x [n]. If X (ejω) is the DFT of x [n], then the
following is true

Sequence DTFT coefficient
x∗[n] X∗(e−jω)
x∗[−n] X∗(ejω)

(x[n] + x∗[n])/2 <{X(ejω)}
(x[n]− x∗[n])/(2j) ={X(ejω)}

e−jωn0 δ[n− n0]

ejω0nx[n] X(ej(ω−ω0))
x[n] = anu[n] X(ejω) = 1

1−ae−jω

12
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6.3 Discrete Fourier transform (DFT)

A bounded sequence x [n] defined on n ∈ {0, . . . , N − 1} can be decomposed as

x[n] =

 1
N

N−1∑
k=0

X[k]ej
2π
N
kn , n ∈ {0, . . . , N − 1}

0 , n /∈ {0, . . . , N − 1}

where X[k] is the DFT of x [n] and is defined as

X[k] =


N−1∑
n=0

x[n]e−
2πj
N
kn , k ∈ {0, . . . , N − 1}

0 , k /∈ {0, . . . , N − 1}

DFT properties

• the DFT pair x[n] ←→ X[k] (finite-length x [n]) is analogous to the DFS pair x̃[n] ←→ X̃[k]
(infinite-length periodic x̃ [n])

• if x[n] is real, then X(k) = X∗[N − k]

• if N ≥ L, then DFT are samples of DTFT

• let x1 [n]N©x2 [n] :=
N−1∑
m=0

x1[m]x2[(n−m) mod N ]. Then x1 [n]N©x2[n]←→ X1[k]X2[k]

• if x[n] = x[((−n))N ] = x[N − n], then X[k] is real

• DFT coefficient table:

Sequence DFT coefficient
x[n] X[k]
x∗[n] X∗[((−k))N ]

x∗[((−n))N ] X∗[k]

x[n]ej2πn`/N X[(k − `) mod N ]

x[((n− `))N ] X[k]e−j2πk`/N

<(x[n]) 1
2
{X[((k))N ] +X∗[((−k))N ]}

=(x[n]) 1
2
{X[((k))N ]−X∗[((−k))N ]}

1
2
{x[n] + x∗[((−n))N ]} <(X[k])

1
2
{x[n]− x∗[((−n))N ]} j=(X[k])

1
2
{x[n] + x[−n]}

∑N−1
n=0 x[n] cos( 2πkn

2N−1)

x[n] ∈ R X[k] = X∗[N − k]

Reference

[EK]: ERwin Kreyszig, Advanced Engineering Mathematics, 10th edition
[AO]: Alan Oppenheim et al., Discrete-time Signal Processing, 2nd edition
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