
Lecture Notes
Partial Differential Equations

Xu Chen
Assistant Professor

Mechanical Engineering, Rm. 325
Department of Mechanical Engineering

University of Washington
chx@uw.edu



Xu Chen PDE September 29, 2019

Contents
1 Basic concepts of PDEs 1

2 PDEs solvable as ODEs 2

3 Vibrating string and wave equation 3
3.1 PDE modeling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
3.2 Solution by separating variables and Fourier series . . . . . . . . . . . . . . . . . . . 4
3.3 Alternative representations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

4 Heat flow 8
4.1 One-dimensional heat equation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
4.2 Steady two-dimensional heat problems . . . . . . . . . . . . . . . . . . . . . . . . . 11

5 *Solving 2nd-order PDEs via the method of characteristics 13

6 Reference 16



Xu Chen PDE September 29, 2019

1 Basic concepts of PDEs
• A partial differential equation (PDE) is an equation involving one or more partial

derivatives of a function (call it u) that depends on two or more variables, often time t and
one or several variables in space.

• The order of the highest derivative is called the order of the PDE.

• A PDE is linear if it is of the first degree in the unknown function u and its partial derivatives.

– e.g. ∂u/∂t = c2∂2u/∂x2 is a linear PDE

– (∂u/∂t)2 = c2∂2u/∂x2 is a nonlinear PDE

Important second-order PDEs

• one-dimensional wave equation
∂2u

∂t2
= c2∂

2u

∂x2
(1)

• one-dimensional heat equation
∂u

∂t
= c2∂

2u

∂x2
(2)

• two-dimensional Laplace equation

∂2u

∂x2
+
∂2u

∂y2
= 0 (3)

• two-dimensional Poisson equation

∂2u

∂x2
+
∂2u

∂y2
= f (x, y) (4)

• two-dimensional wave equation

∂2u

∂t2
= c2

(
∂2u

∂x2
+
∂2u

∂y2

)
(5)

• three-dimensional Laplace equation

∇2u ,
∂2u

∂x2
+
∂2u

∂y2
+
∂2u

∂z2
= 0 (6)

where c is a positive constant, t is time, and x, y, z are Cartesian coordinates.
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We often write ux to denote ∂u/∂x, uxx to denote ∂2u/∂x2, etc. So, the two dimensional Laplace
equation (3) can be equivalently written as

uxx + uyy = 0

One PDE can have many solutions. For instance

u = x2 − y2, u = ex cos y, u = sinx cosh y, u = ln
(
x2 + y2

)
are all solutions of the two-dimensional Laplace equation (3).

Usually a PDE is defined in some bounded domain D, giving some boundary conditions
and/or initial conditions. These additional conditions are very important to define a unique
solution for the PDE.

Theorem 1 (Fundamental theorem on superposition). If u1 and u2 are solutions of a homogeneous
linear PDE in some region R, then

u = c1u1 + c2u2

with any constant c1 and c2 is also a solution of the PDE in R.

2 PDEs solvable as ODEs
This happens if a PDE involves derivatives with respect to one variable only (or can be transformed
to such a form).

Example 2. Solve uxx − u = 0.
This can be solved like ü− u = 0, which has a solution u = Ae−x + Bex . The only difference

is that A and B here may be functions of y. So the answer is

u (x, y) = A (y) ex +B (y) e−x

where A (y) and B (y) are arbitrary functions of y.

Example 3. Solve uxy = −ux.
Let ux = p. Then py = −p⇒ ln |p| = −y + c (x). Note again that c (x) is now a function of x

instead of a constant. So p = c (x) e−y, i.e.

∂u

∂x
= c (x) e−y

Integration with respect to x gives

u (x, y) = f (x) e−y + g (y) , f (x) =

∫
c (x) dx

2
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Figure 1: Vibration string

3 Vibrating string and wave equation
We derive the PDE modeling small transverse vibration of an elastic string, such as a violin string.
Consider the illustrative picture above. The string is placed along the x-axis, stretched to length
L, and fastened at the ends x = 0 and x = L. The string is distorted at t = 0, and released to
vibrate. The problem is to determine the string deflection u (x, t) at a point x ∈ [0, L].

Assumptions:

• The tension caused by stretching the string is so large that the action of the gravitation force
can be neglected;

• The deflection happens in the vertical plane. Every particle of the string moves strictly
vertically. The deflection and the slope at every point of the string always remain small in
absolute value.

3.1 PDE modeling

Consider the forces acting on a small portion of the string. This method is typical of modeling in
mechanics and many other Engineering applications.

Recall Fig. 1. There is no acceleration in the x direction. Hence the horizontal components of
the tension must be constant, i.e.

T1 cosα = T2 cos β = T (7)

By Newton’s second law, in the vertical direction, we have

T2 sin β − T1 sinα = ρ∆x
∂2u

∂t2

where ρ is the mass of the undeflected string per unit length.
Dividing the last equation by (7) yields

T2 sin β

T2 cos β
− T1 sinα

T1 cosα
= tan β − tanα =

ρ∆x

T

∂2u

∂t2
(8)

3
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Notice that
tanα =

(
∂u

∂x

)∣∣∣∣
x

and
tan β =

(
∂u

∂x

)∣∣∣∣
x+∆x

Hence (8) is equivalent to

1

∆x

[(
∂u

∂x

)∣∣∣∣
x+∆x

−
(
∂u

∂x

)∣∣∣∣
x

]
=
ρ

T

∂2u

∂t2

Taking the limit case of ∆x→ 0, we get

∂2u

∂t2
= c2∂

2u

∂x2
, c2 =

T

ρ

which is the one-dimensional wave equation.

3.2 Solution by separating variables and Fourier series

Consider the one-dimensional wave equation

∂2u

∂t2
= c2∂

2u

∂x2
(9)

with two boundary conditions
u (0, t) = 0, u (L, t) = 0

and two initial conditions (position and velocity)

u (x, 0) = f (x) , ut (x, 0) = g (x) , 0 ≤ x ≤ L

It turns out that for PDEs in the structure of (9), a common method called separating variables
can be applied.

Solution steps:

1. “method of separating variables”: set

u (x, t) = F (x)G (t) (10)

to obtain two ODEs: one for F (x) and one for G (t)1

2. solve the two individual ODEs

3. use Fourier series to compose the final solution
1Similar idea applies to general multi-variable functions.

4
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Details:
Step 1: substituting (10) into (9) gives

F (x)
d2G (t)

dt2
= c2G (t)

d2F (x)

dx2

namely
G̈

c2G
=
F

′′

F

The left side is a function of t only; and the right side is a function of x only. Hence it must be
that

G̈

c2G
=
F

′′

F
= k

Therefore we have two ODEs:
F

′′ − kF = 0 (11)

and
G̈− c2kG = 0 (12)

Step 2: satisfying the boundary conditions
Step 2.1: (11) has the boundary condition

u (0, t) = F (0)G (t) = 0

u (L, t) = F (L)G (t) = 0

The case for G (t) ≡ 0 is not practically interesting. Hence we need

F (0) = F (L) = 0

It turns out that k should be negative. Otherwise, if k = 0, then F (x) = ax + b is the solution
of (11), and the boundary condition gives a = b = 0; if k is positive, say k = µ2, then we have
F (x) = Aeµx +Be−µx, and the boundary condition again gives F ≡ 0. Thus, we can let k = −p2.
Then the ODE becomes

F
′′

+ p2F = 0

whose solution is
F (x) = A cos px+B sin px

Adding the boundary condition in this case gives

F (0) = A = 0, F (L) = B sin pL = 0

Hence for a practically meaningful solution, it must be that sin pL = 0. Thus

pL = nπ ⇒ p =
nπ

L
, n is an integer

5
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and
F (x) = Fn (x) = B sin

nπ

L
x

Step 2.2: with the above discussions, we know that

k = −p2 = −
(nπ
L

)2

So (12) becomes
G̈+ λ2

nG = 0, λn = cp =
cnπ

L
whose solution is

Gn (t) = Bn cosλnt+B∗n sinλnt

Hence based on (10) we have

un (x, t) = (Bn cosλnt+B∗n sinλnt)B sin
nπ

L
x

The scalar B is redundant. We can absorb it into Bn and B∗n, to get

un (x, t) = (Bn cosλnt+B∗n sinλnt) sin
nπ

L
x

which is called the eigenfunction or characteristic function of the PDE; and λn’s are called the
eigenvalues of the vibrating string.

Step 3: The eigenfunctions satisfy the PDE and the boundary equation. However a single un
generally does not satisfy the initial conditions. This is addressed by noting that the PDE is linear
and homogeneous, hence a linear combination of the eigenfunctions also is a solution. Let

u (x, t) =
∞∑
n=1

un (x, t) =
∞∑
n=1

(Bn cosλnt+B∗n sinλnt) sin
nπ

L
x

we can enforce the initial condition:

u (x, 0) =
∞∑
n=1

Bn sin
nπ

L
x = f (x) (13)

We can extend f (x) to x < 0 and x > L so that it is an odd periodic function with period 2L
(what we are interested is only the region where x ∈ [0, L]). So (13) is in the form of a Fourier
series. We thus need Bn to be the Fourier series coefficients:

Bn =
2

L

∫ L

0

f (x) sin
nπx

L
dx (14)

There is yet another coefficient B∗n to be determined. The second initial condition is

ut (x, 0) = g (x)

6
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in other words [after using (14)],

∞∑
n=1

B∗nλn sin
nπ

L
x = g (x)

Hence

B∗nλn =
2

L

∫ L

0

g (x) sin
nπ

L
xdx

Using λn = cnπ/L, we get

B∗n =
2

cnπ

∫ L

0

g (x) sin
nπ

L
xdx

3.3 Alternative representations

It turns out the solution derived in the past subsection can have simplified representations.
For simplicity, we consider g (x) = 0 in this subsection. Then B∗n = 0.
The solution is

u (x, t) =
∞∑
n=1

Bn cosλnt sin
nπ

L
x, λn =

cnπ

L

in other words

u (x, t) =
∞∑
n=1

Bn cos
(nπ
L
ct
)

sin
(nπ
L
x
)

Alternatively, we can write it as

u (x, t) =
∞∑
n=1

Bn
1

2

{
sin
[nπ
L

(x− ct)
]

+ sin
[nπ
L

(x+ ct)
]}

(15)

Recall from the initial condition (13), that

∞∑
n=1

Bn sin
nπ

L
x = f (x)

We see that (15) is nothing but

u (x, t) =
1

2
[f ∗ (x− ct) + f ∗ (x+ ct)] (16)

where f ∗ is the odd periodic extension of f , as shown below

x
0 L

7



Xu Chen PDE September 29, 2019

4 Heat flow
The heat flow problem is concerned with the temperature u in a body in space. The physical
model obeys the heat equation

∂u

∂t
= c2∇2a = c2

(
∂2u

∂x2
+
∂2u

∂y2
+
∂2u

∂z2

)
where c2 = K/ (ρσ); K is the thermal conductivity constant; σ is the specific heat; ρ is the density
of the material of the body.

Intuitively, the PDE describes the energy conservation in the body and its environment. The
left hand side is related to the temperature change w.r.t. time; the right hand side is related to
the heat flow exchange in the body.

The PDE has many other applications. For instance, it also models chemical diffusion processes
of one substance or gas into another.

4.1 One-dimensional heat equation

0 x = L

Consider a long thin bar, with constant cross section and homogeneous material, within which
heat flows in the x-direction only. The heat equation becomes

∂u

∂t
= c2∂

2u

∂x2
, c2 =

K

ρσ
(17)

Although the equation looks very similar to the wave equation, the solutions will be shown to be
quite different here.

Consider the boundary conditions

u (0, t) = 0, u (L, t) = 0, ∀t ≥ 0

and the initial condition
u (x, 0) = f (x)

where it is assumed that f (x) is piecewise continuous on [0, L] and has one-sided derivatives at all
interior points of that interval.

The same solution technique applies here–first separate u (x, t) as F (x)G (t), then solve two
separate ODEs, and finally use Fourier series to synthesize.

• Step 1: two ODEs from the PDE.

– Let u (x, t) = F (x)G (t). Then (17) gives

FĠ = c2F
′′
G

8
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Dividing by the nonzero c2FG (c2FG = 0 is not practically interesting) gives

Ġ

c2G
=
F

′′

F

The left side depends only on t and the right side only on x. Hence both sides must
equal a constant k.

– Similar to the wave equation, you can show that it is only interesting to have a negative
k. Let k = −p2. We have

F
′′

+ p2F = 0 (18)

Ġ+ c2p2G = 0 (19)

• Step 2: solve (18) and (19) with the boundary condition constraints. For (18), the general
solution is

F (x) = A cos px+B sin px

To satisfy the boundary condition, it must be that

u (0, t) = F (0)G (t) = 0

and
u (L, t) = F (L)G (t) = 0

It is not interesting to have G (t) ≡ 0. So F (0) = 0 and F (L) = 0, yielding

A = 0

and
sin (pL) = 0⇒ p =

nπ

L
, n = 1, 2, . . .

We finally get
F (x) = B sin

nπx

L
, n = 1, 2, . . . (20)

With (19) and p = nπ/L, we have

Ġ+ λ2
nG = 0, λn =

cnπ

L

whose solution is
Gn (t) = Bne

−λ2nt (21)

The two constant scalars in (20) and (21) can be combined. Taking B = 1, we get

un (x, t) = Fn (t)Gn (t) = Bn sin
nπx

L
e−λ

2
nt (22)

9
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• Step 3: use Fourier series to solve the entire problem. To additionally satisfy the initial
conditions, the eigenfunctions (22) are combined to give

u (x, t) =
∞∑
n=1

un (x, t) =
∞∑
n=1

Bn sin
nπx

L
e−λ

2
nt, λn =

cnπ

L
(23)

Adding the constraint

u (x, 0) =
∞∑
n=1

Bn sin
nπx

L
= f (x)

we see that Bn has to be the coefficients of the Fourier series, i.e.

Bn =
2

L

∫ L

0

f (x) sin
nπx

L
dx

Observations:
Note the exponential factor e−λ2nt in the solution. The temperature of the bar will approach to

zero as t approaches to infinity. The decay rate depends on the length L and material properties
c of the bar.

Example 4. A copper bar with length L = 80cm has an initial temperature 100 sin (3πx/80)
degrees C. The ends are kept at 0 degree C. How long will it take for the maximum tempera-
ture in the bar to drop to 50 degrees C? Copper has a density of 8.92g/cm3, a specific heat of
0.092cal/ (g ·o C), and a thermal conductivity of 0.95cal (cm · sec ·o C)

Solution: We have
c2 =

K

σρ
=

0.95

0.092 · 8.92
= 1.158

[
cm2/sec

]
From the initial condition and (23)

u (x, 0) =
∞∑
n=1

Bn sin
nπx

L
= f (x) = 100 sin

3πx

80

By inspection,
n = 3, B3 = 100, B1 = B2 = B4 = · · · = 0

Thus
u (x, t) = 100 sin

3πx

L
e−λ

2
3t, λ2

3 =
32c2π2

L2
= 0.01607

For the maximum temperature to drop 50 degrees C, we need

e−λ
2
3t = 0.5⇒ t =

ln 0.5

−0.01607
= 43 [sec]

10
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4.2 Steady two-dimensional heat problems

We show another application of the method of separating variables in two-dimensional steady
(time-independent, i.e. ∂u/∂t = 0) heat problem. The heat equation is

∂u

∂t
= c2∇2u = c2

(
∂2u

∂x2
+
∂2u

∂y2

)
= 0

As ∂u/∂t = 0, we have
∂2u

∂x2
+
∂2u

∂y2
= 0

Several boundary value problems (BVPs) can be considered in a region R of the xy plane and
a given boundary condition on the boundary curve C of R:

• First BVP or Dirichlet Problem: if u is prescribed on C

• Second BVP or Neumann Problem: if the normal derivative un = ∂u/∂n is prescribed on C

• Third BVP, Mixed BVP, or Robin Problem: if u is prescribed on a portion of C and un on
the rest of C

Dirichlet Problem in a rectangle R:

0 x

y

a

b
y = f(x)

u = 0

u = 0

u = 0R

Consider the picture above. The boundary conditions are as specified. Applying the method
of separating variables u (x, y) = F (x)G (y) to

uxx + uyy = 0

we have
1

F

d2F

dx2
= − 1

G

d2G

dy2
= −k

which gives
d2F

dx2
+ kF = 0

11
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and
d2G

dy2
− kG = 0

The boundary conditions imply that

F (0) = 0, F (a) = 0

Similar as what we have done in the previous examples, it can be obtained that k must be positive:

k =
(nπ
a

)2

and the solution to the first ODE is

F (x) = Fn (x) = sin
nπ

a
x

For the second ODE
d2G

dy2
− kG =

d2G

dy2
−
(nπ
a

)2

G = 0

the solution is
G (y) = Gn (y) = Ane

nπy/a +Bne
−nπy/a

Applying the boundary condition on the y direction yields that G (0) = 0, namely An = −Bn.
This gives

Gn (y) = An
(
enπy/a − e−nπy/a

)
= 2An sinh

nπy

a
We can thus write A∗n = 2An and get

un (x, y) = Fn (x)Fn (y) = A∗n sin
nπx

a
sinh

nπy

a

Finally, we consider the infinite series

u (x, y) =
∞∑
n=1

un (x, y)

to get a solution that also satisfies the boundary condition u (x, b) = f (x). It is required that

u (x, b) =
∞∑
n=1

(
A∗n sinh

nπb

a

)
sin

nπx

a
= f (x)

which shows that A∗n sinh nπb
a

must be the Fourier coefficients of f (x):

A∗n sinh
nπb

a
=

2

a

∫ a

0

f (x) sin
nπx

a
dx

Summarizing:

u (x, y) =
∞∑
n=1

A∗n sin
nπx

a
sinh

nπy

a

where
A∗n =

2

a sinh (nπb/a)

∫ a

0

f (x) sin
nπx

a
dx

12
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5 *Solving 2nd-order PDEs via the method of characteristics
This section discusses an alternative solution technique for second-order PDEs.

Big picture Certain PDEs are easy to solve. For example

uvw =
∂2u

∂w∂v
= 0 (24)

can be readily solved by two successive integrations:

∂u

∂v
= h (v)

and then
u =

∫
h (v) dv + ψ (w) = φ (v) + ψ (w)

In terms of x and t, we thus have

u (x, t) = φ (x+ ct) + ψ (x− ct) (25)

It turns out that many PDEs can be transformed to the form of (24).

One-dimensional wave equation In

∂2u

∂t2
= c2∂

2u

∂x2
(26)

introduce new variables
v = x+ ct, w = x− ct

then u became a function of v and w.
By chain rule, we have

ux = uvvx + uwwx = uv + uw

uxx = (uv + uw)x = (uv + uw)v vx + (uv + uw)w wx

= uvv + uwv + uvw + uww

We assume that all the partial derivatives are continuous, so that uwv = uvw. Hence

uxx = uvv + 2uvw + uww (27)

Performing the above steps to the partial derivatives with respect to t, we get

ut = uvvt + uwwt = cuv − cuw
utt = c (uv − uw)t = c (uv − uw)v vt − c (uv + uw)w wt

= c2 (uvv − 2uvw + uww) (28)

13
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Substituting (27) and (28) into (26) gives

c2 (uvv − 2uvw + uww) = c2 (uvv + 2uvw + uww)

in other words
uvw =

∂2u

∂v∂w
= 0

which is in the form of (24)! Therefor the solution is in the form of (25).
We now add the boundary and initial conditions to obtain the detailed forms of φ and ψ in

(25).
Differentiating (25) and applying the chain rule gives

ut (x, t) = cφ
′
(x+ ct)− cψ′

(x− ct)

To satisfy the initial condition

u (x, 0) = f (x) , ut (x, 0) = g (x)

we must have

φ (x) + ψ (x) = f (x) (29)

cφ
′
(x)− cψ′

(x) = g (x)

Integrating the second equation yields

φ (x)− ψ (x) = φ (x0)− ψ (x0) +

∫ x

x0

g (s) ds

which, combined with (29), gives

φ (x) =
1

2
f (x) +

1

2c

∫ x

xo

g (s) ds+
1

2
[φ (x0)− ψ (x0)]

ψ (x) =
1

2
f (x)− 1

2c

∫ x

xo

g (s) ds− 1

2
[φ (x0)− ψ (x0)]

Changing the notations of variables, we get

φ (x+ ct) =
1

2
f (x+ ct) +

1

2c

∫ x+ct

xo

g (s) ds+
1

2
[φ (x0)− ψ (x0)]

ψ (x− ct) =
1

2
f (x− ct)− 1

2c

∫ x−ct

xo

g (s) ds− 1

2
[φ (x0)− ψ (x0)]

After simplifications, we finally have

u (x, t) =
1

2
[f (x+ ct) + f (x− ct)] +

1

2c

∫ x+ct

xo−ct
g (s) ds

which is an alternative representation of the solution from the Fourier series method.2

2Let g (x) = 0. You can see that the solution is the same as that in (16).

14
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General second-order PDEs solvable via the method of characteristics The method of
characteristics generalizes the procedure discussed above. It concerns PDEs of the form

Auxx + 2Buxy + Cuyy = F (x, y, u, ux, uy) (30)

Example 5. For the 1-d wave equation, we have y = ct and hence

utt − c2uxx = c2 (uyy − uxx) = 0

Example 6. For the 1-d heat equation, let y = c2t, then

ut − c2uxx = c2 (uy − uxx) = 0

In general, (30) can be classified to three types:

Type Defining condition Example
hyperbolic AC −B2 < 0 wave equation
parabolic AC −B2 = 0 heat equation
elliptic AC −B2 > 0 Laplace equation

Similar as before, to solve the PDE, we introduce new variables v and w, which are functions of
x and y. The choice of v and w obeys specific rules from engineering and mathematical experience.
For the three types of PDEs, we have

Type New variables Normal form
hyperbolic v = Φ, w = Ψ uvw = F1

parabolic v = x, w = Φ = Ψ uww = F2

elliptic v = 1
2

(Φ + Ψ), w = 1
2i

(Φ−Ψ) uvv + uww = F3

where Φ and Ψ are from solving a characteristic ODE equation

A
(
y

′
)2

− 2By
′
+ C = 0

with y′
= dy/dx.

More specifically, solve the characteristic equation and write it in the form of Φ (x, y) =const
and Ψ (x, y) =const. For instance, if we have

uxx + 4uyy = 0

then A = 1, B = 0, and C = 4. This corresponds to the elliptic type of PDE. The characteristic
equation is (

y
′
)2

+ 4 = 0
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yielding

y
′
= ±2i, y =

∫
y

′
dx+ const = ±2ix+ const

Hence
Φ = y − 2ix, Ψ = y + 2ix

The new variables should be chosen as

v =
1

2
(Φ + Ψ) = y

w =
1

2i
(Φ−Ψ) = −2x

With the new variables, you can verify that the PDE is transformed into

uvv + uww = 0

The derivation details are in “Methods of Mathematical Physics 2 vols” by Courant, R. and D.
Hilbert.

Exercise 7. Transform the PDEs to normal forms and solve.

uxx + 4uyy = 0

uxx − 2uxy + uyy = 0

uxx − 6uxy + 9uyy = 0

6 Reference
[EK] Erwin Kreyszig, Advanced Engineering Mathematics, 10th edition
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