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Part I

Matrix computation and linear algebra

1 Basic concepts of matrices and vectors

Matrices and vectors are the main tools of linear algebra. They provide great convenience in expressing
and manipulating large amounts of data and functions. Consider, for instance, a linear equation set

3x1 + 4x2 + 10x3 = 6

x1 + 4x2 − 10x3 = 5

4x2 + 10x3 = −1

This is equivalent to  3 4 10
1 4 −10
0 4 10

 x1

x2

x3

 =

 6
5
−1


Formally, we write an m× n matrix A as

A = [ajk] =


a11 a12 . . . a1n

a21 . . . . . . a2n

... . . . . . .
...

am1 am2 . . . amn


m×n (reads m by n) is the dimension/size of the matrix. It means that A has m rows and n columns.
Each element ajk is an entry of the matrix. You can see that each entry is marked by two subscripts:
the first is the row number and the second is the column number. For two matrices A and B to be
equal, it must be that ajk = bjk for any j and k, i.e., all corresponding entries of the matrices must
equal. Thus, matrices of different sizes are always different.

If m = n, A belongs to the class of square matrices. The entries a11, a22, . . . , ann are then called
the diagonal entries of A.

Upper triangular matrices are square matrices with nonzero entries only on and above the main
diagonal. Similarly, lower triangular matrices have nonzero entries only on and below the main diagonal.

Diagonal matrices have nonzero entries only on the main diagonal.
An identity matrix is a diagonal matrix whose nonzero elements are all 1.
Vectors are special matrices whose row or column number is one. A row vector has the form of

a = [a1, a2, . . . , an]

Its dimension is 1× n. An m× 1 column vector has the form of

b =


b1

b2

...
bm


1
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Example (Matrix and quadratic forms). We can use matrices to express general quadratic functions
of vectors. For instance

f (x) = xTAx+ 2bx+ c

is equivalent to

f(x) =

[
x
1

]T [
A b
bT c

] [
x
1

]

1.1 Matrix addition and multiplication

The sum of two matrices A and B (of the same size) is

A+B = [ajk + bjk]

The product between a m× n matrix A and a scalar c is

cA = [cajk]

i.e. each entry of A is multiplied by c to generate the corresponding entry of cA.
Thematrix product C = AB is meaningful only if the column number of A equals the row number

of B. The computation is done as shown in the following example:
a11 a12 a13

a21 a22 a23

a31 a32 a33

a41 a42 a43


 b11 b12

b21 b22

b31 b32

 =


c11 c12

c21 c22

c31 c32

c41 c42


where

c21 = a21b11 + a22b21 + a23b31

= [a21, a22, a23]

 b11

b21

b31


= "second row of A"× "first column of B"

More generally:

cjk = aj1b1k + aj2b2k + · · ·+ ajnbnk

= [aj1, aj2, . . . , ajn]


b1k

b2k

...
bnk

 (1)

2
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namely, the jk entry of C is obtained by multiplying each entry in the jth row of A by the corresponding
entry in the kth column of B and then adding these n products. This is called a multiplication of rows
into columns.

It is a good habit to always check the matrix dimensions when doing matrix products:

A B = C
[m× n] [n× p] [m× p]

This way it is clear that AB in general does not equal to BA, i.e., matrix multiplication is not com-
mutative. The order of factors in matrix products must always be observed very carefully. For instance

ABC = (AB)C = A (BC) 6= BCA

It is very useful to think of matrices as combination of vectors. For example, the matrix-vector
product

Ax =


a11 a12 a13

a21 a22 a23

a31 a32 a33

a41 a42 a43


 x1

x2

x3

 =

 a11x1 + a12x2 + a13x3

a21x1 + a22x2 + a23x3

a31x1 + a32x2 + a33x3


is the weighted sum of the columns of A

Ax =


a11 a12 a13

a21 a22 a23

a31 a32 a33

a41 a42 a43


 x1

x2

x3

 = x1


a11

a21

a31

a41

+ x2


a12

a22

a32

a42

+ x3


a13

a23

a33

a43


1.2 Matrix transposition

Definition 1 (Transpose). The transpose of an m× n matrix

A = [ajk] =


a11 a12 . . . a1n

a21 . . . . . . a2n

... . . . . . .
...

am1 am2 . . . amn


is the n×m matrix AT (read A transpose) defined as

AT = [akj] =


a11 a21 . . . am1

a12 . . . . . . am2

... . . . . . .
...

a1n a2n . . . amn


Transposition has the following rules:

•
(
AT
)T

= A

3
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• (A+B)T = AT +BT

• (cA)T = cAT

• (AB)T = BTAT

If A = AT , then A is called symmetric. If A = −AT then A is called skew-symmetric. We will talk
about these special matrices in more details later in this set of notes.

1.3 Exercises

1. Let

J =

 J11 J12 J13

J12 J22 J23

J13 J23 J33

 = JT

Show that

Ja =

 J11 J12 J13

J12 J22 J23

J13 J23 J33

 a1

a2

a3

 =

 a1 a2 a3 0 0 0
0 a1 0 a2 a3 0
0 0 a1 0 a2 a3



J11

J12

J13

J22

J23

J33


2. Show that

e0 e1 . . . . . . en

e0

. . .
...

. . .
. . .

...
. . . e1

e0




a0

a1

...
an−1

1

 =



a0 a1 . . . an−1 1

a1 . .
.

. .
.

... . .
.
. .
.

an−1 . .
.

1




e0

e1

e2

...
en


and

[e0, . . . en−1, en]



a0 a1 . . . an−1 1

a1 . .
.

. .
.

... . .
.
. .
.

an−1 . .
.

1


= [a0, . . . an−1, 1]


e0

e1 e0

...
. . .

. . .
...

. . .
. . .

en . . . . . . e1 e0


Here, all unmarked entrices are zero.

4
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3. (A linear equation set and its matrix form) Consider an n× n matrix X = [xij] whose row sums
and column sums are all 1, i.e.,

n∑
i=1

xij = 1; ∀ j = 1, 2, . . . , n

n∑
j=1

xij = 1; ∀ i = 1, 2, . . . , n

Stack all columns of X together and write

x =



x11

x21

...
xn1

x12

x22

...
xn2

...

...

...
xnn


Show that 

eT

eT

. . .

eT

I I . . . I

x =


1
1
...
1
e


where

e =

 1
...
1


n×1

5



Xu Chen Matrix, Linear Algebra September 29, 2019

2 Linear systems of equations

A linear system of m equations in n unknowns x1, . . . , xn is a set of equations of the form

a11x1 + a12x2 + . . . a1nxn = b1

a21x1 + a22x2 + . . . a2nxn = b2 (2)
. . .

am1x1 + am2x2 + . . . amnxn = bm

The system is linear because each variable xj appears in the first power only. a11, . . . , amn are
the coefficients of the system. If all the bj are zero, then the linear equation is called a homogeneous
system. Otherwise, it is a nonhomogeneous system.

Homogeneous systems always have at least the trivial solution x1 = x2 = · · · = xn = 0.
The m equations (2) may be written as a single vector equation

Ax = b

where

A =


a11 a12 . . . . . . a1n

a21 a22 . . . . . . a2n

...
... . . . . . .

...
am1 am2 . . . . . . amn

 , x =


x1

x2

...

...
xn

 , b =


b1

b2

...
bm


Consider the example of solving

x1 + x2 = 1

x1 − x2 = 20

Very quickly, you can obtain the solution of x1 = 21/2 and x2 = −19/2. In a bit more details, here is
one solution procedure:

• Subtract the first equation from the second equation, yielding

−2x2 = 19

and hence x2 = −19/2.

• Substitute x2 = −19/2 to the first equation, to get

x1 = 1− x2 = 21/2

6
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For larger systems, Gauss1 elimination is a systematic method to solve linear equations. We demonstrate
the procedures via the following example. Let

Ax = b

where

A =


1 −1 1
−1 1 −1
0 10 25
20 10 0

 , b =


0
0
90
80


i.e.

x1 − x2 + x3 = 0 (3)
−x1 + x2 − x3 = 0 (4)

10x2 + 25x3 = 90 (5)
20x1 + 10x2 = 80 (6)

Gauss elimination is done as follows:

1. Obtain the augmented matrix of the system

[
A b

]
=


1 −1 1 0
−1 1 −1 0
0 10 25 90
20 10 0 80


2. Perform elementary row operation on the augmented matrix, to obtain the Row Echelon Form.

The idea is to systematically manipulate coefficients for the variables such that individual equa-
tions become as simplified as possible. For instance, adding the first row to the second row
gives 

1 −1 1 0
−1 1 −1 0
0 10 25 90
20 10 0 80

→


1 −1 1 0
0 0 0 0
0 10 25 90
20 10 0 80


This is equivalent to doing the step of adding (3) to (4) to get

x1 − x2 + x3 = 0 (7)
0 = 0 (8)

10x2 + 25x3 = 90 (9)
20x1 + 10x2 = 80 (10)

1Johann Carl Friedrich Gauss, 1777-1855, German mathematician: contributed significantly to many fields, including
number theory, algebra, statistics, analysis, differential geometry, geodesy, geophysics, electrostatics, astronomy, Matrix
theory, and optics.
Gauss was an ardent perfectionist. He was never a prolific writer, refusing to publish work which he did not consider

complete and above criticism. Mathematical historian Eric Temple Bell estimated that, had Gauss published all of his
discoveries in a timely manner, he would have advanced mathematics by fifty years.

7
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Hence we have removed a redundant equation. To additionally eliminate x1 in other equations,
add −20 times the first equation to the fourth equation. This corresponds to row operations on
the augmented matrix 

1 −1 1 0
0 0 0 0
0 10 25 90
20 10 0 80

→


1 −1 1 0
0 0 0 0
0 10 25 90
0 30 −20 80


Here the first row of A is called the pivot row and the first equation the pivot equation. The
coefficient 1 of its x1 is called the pivot in this step. What we have done is using the pivot row
to eliminate x1 in the other equations. At this stage, the linear equations look like

x1 − x2 + x3 = 0 (11)
0 = 0 (12)

10x2 + 25x3 = 90 (13)
30x2 − 20x3 = 80 (14)

Re-arranging yields

x1 − x2 + x3 = 0 (15)
10x2 + 25x3 = 90 (16)
30x2 − 20x3 = 80 (17)

0 = 0 (18)

Moving on, we can get ride of x2 in the third equation, by adding to it -3 times the second
equation. Correspondingly in the augmented matrix, we have

1 −1 1 0
0 10 25 90
0 30 −20 80
0 0 0 0

→


1 −1 1 0
0 10 25 90
0 0 −95 −190
0 0 0 0


Normalizing the coefficients gives

1 −1 1 0
0 10 25 90
0 0 −95 −190
0 0 0 0

→


1 −1 1 0
0 1 5/2 9
0 0 1 38/19
0 0 0 0


The last equation is called the row echelon form of the augmented matrix.

3. The row echelon form is saying that

x3 = 38/19

x2 + x3 = 9

x1 − x2 + x3 = 0

and the unknowns can be obtained by back substitution.

8
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Elementary Row Operations for Matrices What we have done can be summarized by the following
elementary matrix row operations:

• Interchange of two rows

• Addition of a constant multiple of one row to another row

• Multiplication of a row by a nonzero constant c

Let the final row echelon form be denoted by [
R f

]
We have

1. The two systems Ax = b and Rx = f are equivalent.

2. At the end of the Gauss elimination (before the back substitution), the row echelon form of the
augmented matrix will be 

r11 r12 . . . . . . . . . r1n f1

r22 . . . . . . . . . r2n f2

. . . . . . . . .
...

...
rrr . . . rrn fr

fr+1

...
fm


where all unfilled entries are zero.

3. The number of nonzero rows, r, in the row-reduced coefficient matrix R is called the rank of R
and also the rank of A.

4. Solution concepts:

(a) No solution. If r is less than m (meaning that R actually has at least one row of all 0s) and
at least one of the numbers fr+1, fr+2, . . . , fm is not zero, then the system Rx = f is
inconsistent: No solution is possible. Therefore the system Ax = b is inconsistent as well.

(b) Unique solution. If the system is consistent and r = n, there is exactly one solution, which
can be found by back substitution.

(c) Infinitely many solutions. To obtain any of these solutions, choose values of xr+1, . . . , xn
arbitrarily. Then solve the r-th equation for xr (in terms of those arbitrary values), then the
(r − 1)-st equation for xr−1, and so on up the line.

9
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3 Vector space

3.1 Fields

Consider the set of real numbers R and the set of complex numbers C. Denote F as either R or C.
You can see that F has the following properties: ∀ w, z, u ∈ F

• w + z = z + w

• (w + z) + u = w + (z + u)

• (wz)u = w (zu)

• there exists elements 0 and 1 in F such that z + 0 = z and z · 1 = z

• ∀z ∈ F, ∃w ∈ F s.t. z + w = 0

• (inverse) ∀z ∈ F, z 6= 0, ∃w ∈ F such that zw = 1.

• u (w + z) = uw + uz

Real and complex numbers are fundamental for science and engineering. They have various nice prop-
erties. The notion of fields generalizes these two important sets of numbers.

Definition 2 (Field). A field F is a set of elements called scalars together with two binary operations,
addition (+) and multiplication (·), such that take any α, β, γ ∈ F the following hold:

(a) closure: α · β ∈ F, α + β ∈ F
(b) commutativity: α · β = β · α, α + β = β + α
(c) associativity: α + (β + γ) = (α + β) + γ, α · (β · γ) = (α · β) · γ
(d) distribution: α · (β + γ) = α · β + α · γ
(e) identity:
∃ additive identity 0 ∈ F such that α + 0 = α
∃ multiplicative identity 1 ∈ F such that α · 1 = α
(f) inverse:
∀α ∈ F, ∃ an additive inverse −α ∈ F such that α + (−α) = 0
∀α ∈ F and α 6= 0, ∃ a multiplicative inverse α−1 ∈ F such that α · α−1 = 1

There is no need for division or substraction in the definition above. The existance of inverse from
wz = 1 makes the notion of 1/z = z−1 meaningful, which in turn makes division meaningful, namely,
w
z
actually means w

(
1
z

)
where 1/z is the inverse of z.

Example 3. The following are fields

• R: the set of real numbers

• C: the set of complex numbers

10
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• R (s): the set of rational functions in s with real coefficients, namely, if G ∈ R(s), G =
(b0 + b1s+ b2s

2 + · · ·+ bms
m)/(a0 + a1s+ a2s

2 + · · ·+ ans
n).

The following are not fields

• R [s]: the set of polynomials in s with real coefficients under usual polynomial multiplication and
addition, namely, if p ∈ R [s], p = b0 + b1s+ b2s

2 + · · ·+ bms
m. There is no multiplicative inverse

here.

• R2×2: the set of 2 × 2 matrices under usual matrix multiplication and addition. There is no
multiplicative inverse for singular matrices such as[

0 1
0 1

]
As the last example above suggests, square matrices of the same size, unless given additionally

constraints, do not form a field. You would agree that square matrices are more difficult to work on
than real numbers, which provides some intuitions about the importance of fields.

3.2 Vectors

Vector space deals with a collection of elements. For example,

R2 = {(x, y) : x, y ∈ R}
R3 = {(x, y, z) : x, y, z ∈ R}

Generalizing, we can write

Fn = {(x1, x2, . . . , xn) : xj ∈ F for j = 1, 2, . . . , n}

e.g.
C4 = {(z1, . . . , z4) : z1, z2, z3, z4 ∈ C}

Here (x1, x2, . . . , xn) is called a list of length n, or an n-tuple; xj is called the jth coordinate of the
n-tuple.

From here you can get the intuition of the importance of linear algebra. It is easy to inteprate C1

as a plane. For n ≥ 2, however, human brains cannot provide a geometric model of Cn. BUT, we can
still perform algebraic manipulations in Fn as easily as R2 or R3.

To simplify notations, we often write

x = (x1, x2, . . . , xn)

where x is in Fn and xj is in F.

11
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3.3 Vector space

For R2 the concepts of vector addition and scaling are geometrically intuitive. They provide great
convenience for analysis in practical problems. Math models in economy often have thousands of
variables and have to deal with, which cannot be dealt with geometrically, but only algebraically (hence
the subject is called linear algebra).

Definition 4 (Vector space). A vector space (V,F) is a set of vectors V together with a field F
and two operations, vector-vector addition (+) and vector-scalar multiplication (◦) such that for any
α, β, γ ∈ F and any v, v1, v2, v3 ∈ V the following hold:

(a) closure: v1 + v2 ∈ V, α ◦ v1 ∈ V
(b) commutativity: v1 + v2 = v2 + v1

(c) associativity:

v1 + (v2 + v3) = (v1 + v2) + v3

α ◦ (β ◦ γ) = (α · β) ◦ γ

(d) distribution:

α ◦ (v1 + v2) = α ◦ v1 + α ◦ v2

(α + β) ◦ v1 = α ◦ v1 + β ◦ v1

(e) identity:
∃ a zero vector 0 ∈ V such that v + 0 = v
∃ multiplicative identity 1 ∈ F such that 1 ◦ v = v
(f) additive inverse: ∃ −v ∈ V such that v + (−v) = 0

We shall simplify the multiplication notations and use · alone as the appropriate action will be clear
from context. We will also use just 0 for the both identities 0 ∈ F and 0 ∈ V.

Most of the times, the base field F is either R or C. We often simply use F without explicitly stating
the base field.

Example 5. (R,R) is a vector space (any field is a vector space itself); (R [s] ,R) with formal addition
and scalar multiplication of polynomials is a vector space; (R [s] ,C) is however not a vector space.

3.4 Subspaces

A subset U of V is called a subspace of V if U is also a vector space. For example,

{(x1, 0, 0) : x1 ∈ F}

is a subspace of F3.
To check whether U is a subspace of V we only need to check three things:

• additive identity: 0 ∈ U

12
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• closed under addition: u, v ∈ U implies u+ v ∈ U

• closed under scalar multiplication: a ∈ F and u ∈ U implies au ∈ U

These conditions insure that the results of normal operations in U “stay in U,” and hence forming a
sub vector space.

Example 6. The following is not a subspace{
(x1, x2) ∈ F2 : x2 = x1 + 10

}
One benefit of introducing subspaces is the enabling of decompositions of vector spaces.
The sum of U1, ..., Um is the set of all possible sums of elements of U1, ..., Um. More specifically

U1 + ...+ Um = {u1 + u2 + · · ·+ um : u1 ∈ U1, ..., um ∈ Um}

For instance, let

U =
{

(x, 0, 0) ∈ F3 : x ∈ F
}

W =
{

(0, y, 0) ∈ F3 : y ∈ F
}

Then
U + W =

{
(x, y, 0) ∈ F3 : x, y ∈ F

}
is also a subspace of F3.

We will be especially interested in cases where each vector in V can be uniquely represented by

u1 + u2 + · · ·+ um

where uj ∈ Uj and V = U1 + U2 + · · ·+ Um. In fact, this situation is so important that it has a
special name: direct sum, written V = U1 ⊕U2 ⊕ · · · ⊕Um. As an example, if

U =
{

(x, 0, z) ∈ F3 : x, z ∈ F
}

W =
{

(0, y, 0) ∈ F3 : y ∈ F
}

then
F3 = U⊕W

Direct sums of subspaces are analogous to disjoint unions of subsets. We have the following theorem.

Theorem 7. Suppose thatU andW are subspaces ofV. ThenV = U⊕W if and only ifV = U+W
and U ∩W = {0}.

13
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3.5 Finite-dimensional vector spaces

Given a set of m vectors a1, a2, ..., am with the same size,

k1a1 + k2a2 + · · ·+ kmam

is called a linear combination of the vectors. If

a1 = k2a2 + k3a3 + · · ·+ kmam

then a1 is said to be linearly dependent on a2, a3, ..., am. The set

{a1, a2, . . . , am} (19)

is then a linearly dependent set. The same idea holds if a2 or any vector in the set (19) is linearly
dependent on others.

Generalizing, if
k1a1 + k2a2 + · · ·+ kmam = 0

holds if and only if
k1 = k2 = · · · = km = 0

then the vectors in (19) are linearly dependent. This is saying that at least one of the vectors can be
expressed as a linear combination of the other vectors.

Why is linear independence important? Well, if a set of vectors is linearly dependent, then we can
get rid of one or perhaps more of the vectors until we get a linearly independent set. This set is then
the smallest “truly essential” set with which we can work.

Example 8. The following are true
(a) In R2

v1 =

[
1
1

]
, v2 =

[
1
0

]
is a linearly independent set (and is actually a basis).

v1 =

[
1
1

]
, v2 =

[
1
0

]
, v3 =

[
3
4

]
is not a linearly independent set.

(b) The vectors

v1 =

[
1

1+s
1

10+s

]
, v2 =

[ 1
s2+1
s+1

(s+10)(s2+1)

]
are linearly independent in (R2 (s) ,R), as the only way for

k1v1 + k2v2 = 0

to hold is that k1 = k2 = 0, if k1, k2 are constrained to be real numbers. But they are linearly dependent
in (R2 (s) ,R (s)), as we can write

v2 =
s+ 1

s2 + 1
v1

and (s+ 1)/(s2 + 1) ∈ R(s).

14
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Definition (Dimension of a vector space). A vector space V has dimension n, or is n-dimensional, if
it contains a linearly independent set of n vectors.

If for any n, a vector space contains a linearly independent set of n vectors regardless of how large
n is, then the vector space is called infinite dimensional.2 This is opposed to the finite-dimensional
vector space. Linear algebra focuses on finite-dimensional vector spaces. The key concepts associated
with these spaces are: span, linear independence, basis, and dimension.

Consider a set of n linearly independent vectors, a1, a2, ..., an, each with n components. All the
possible linear combinations of a1, a2, ..., an form the vector space Rn. This is the span of the n
vectors.

Definition 9 (Basis). A basis of V is a set B of vectors in V, such that any v ∈ V can be uniquely
expressed as a finite linear combination of vectors in B.

Remark 10. Basis are not unique. For example, both 1 and −1 are basis for R.

Theorem 11. Every finite-dimensional vector space has a basis

Theorem 12. Every linearly independent list of vectors in a finite-dimensional vector space can be
extended to a basis of the vector space

Theorem 13. Suppose V is finite dimensional and U is a subspace of V. Then there is a subspace
W of V such that V = U⊕W.

4 Matrix defines linear transformations between vector spaces

Now that we know vector spaces, we will develop some deeper understanding of matrices.

Example 14. A person X has two ID cards from two different companies. Suppose both companies
include personal information such as name, height, and birthday. The first company arranges the data
as:

x1 = name
x2 = height (in ft)
x3 = birthday

and X’s ID is composed of

x1 = X
x2 = 6.0

x3 = 19901201

2An example of an infinite dimensional vector space is the space of all continuous functions on some interval [a, b].

15



Xu Chen Matrix, Linear Algebra September 29, 2019

The second company arranges X’s information as

y1 = X
y2 = 6019901201

y3 = 6× 30.48 = 182.88 (cm)

Namely,

y1 = name
y2 = 109height (in ft) + birthday
y3 = height (in cm)

The two different ID cards are related by y1

y2

y3

 =

 1 0 0
0 109 1
0 30.48 0


︸ ︷︷ ︸

A

 x1

x2

x3

 (20)

So the same person has two seemingly different profiles in two companies. Matrix A above connects
the two profiles. If the first company wants to shift the data base of its entire employees, all that needs
to be done is perform a matrix-vector multiplication in (20).

More generally, matrices define linear transformations/mappings between vector spaces. A vector
can have different representations in two vector spaces, which however can be connected by some
corresponding transformation matrix.

Example. A vector
[
x1

x2

]
is rotated by an angle of θ in the 2-dimensional vector space. Let x1 =

r cosα and x2 = r sinα. The rotated vector has the following representation

y1 = r cos (θ + α) = r cos θ cosα− r sin θ sinα

y2 = r sin (θ + α) = r sin θ cosα + r cos θ sinα

namely, [
y1

y2

]
=

[
cos θ − sin θ
sin θ cos θ

] [
x1

x2

]
Let X and Y be any vector spaces. To each vector x ∈ X we assign a unique vector y ∈ Y . In

this way we have a mapping (or transformation) of X into Y . If we denote such a mapping by F ,
we can write F (x) = y. The vector y ∈ Y is called the image of x ∈ X under the mapping F .
L is called a linear transformation or linear mapping, if ∀v,x ∈ X and c ∈ R,

L (v + x) = L (v) + L (x)

L (cx) = cL (x)

The scalar c can be extended to a more general scalar in a field F. Suppose V and W are vector
spaces over the same field F, L is called a linear transformation on V to W , if for all α, β ∈ F and all
v,x ∈ V ,

L (αv + βx) = αL (v) + βL (x)
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Example 15 (Lyapunov operator). V = Rn×n, W = Rn×n

L (P ) = ATP + PA

where P ∈ V , A ∈ Rn×n, defines a linear transformation.

Linear transformation from Rn to Rm Let X = Rn and Y = Rm. Any real m × n matrix
A = [ajk] defines a linear transformation of X to Y :

y = Ax

It is a linear transform because

A (x + v) = Ax + Av, A (cx) = cAx

Hence understanding the properties of matrices are central for analyzing and designing linear mappings
between vector spaces. We study some of the main properties about matrices next.

5 Matrix properties

5.1 Rank

Definition 16 (Rank). The rank of a matrix A is the maximum number of linearly independent row
or column vectors.

As you can see now, row/column operations are simply performing linear operations on the row/column
vectors. Hence we have the following result.3

Theorem. Row or column operations do not change the rank of a matrix.

With the concept of linear dependence, many matrix-matrix operations can be understood from the
view point of vector manipulations.

Example (Dyad). A = uvT is called a dyad, where u and v are vectors of proper dimensions. It is a
rank 1 matrix, as can be seen that A = uvT is formed by linear combinations of the vector u, where
the weights of the combinations are coefficients of v. Take any x with proper dimension. Ax is always
in the direction of u.

Fact. For A,B ∈ Rn×n, if rank (A) = n then AB = 0 implies B = 0. If AB = 0 but A 6= 0 and
B 6= 0, then rank (A) < n and rank (B) < n.

3Recall the three elementary matrix row operations:

• Interchange of two rows

• Addition of a constant multiple of one row to another row

• Multiplication of a row by a nonzero constant c

These can all be represented as left multiplications by full-rank matrices with suitable structure.
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5.2 Range and null spaces

Definition 17 (Range space). The range space of a matrix A, denoted as R (A), is the span of all
the column vectors of A.

Definition 18 (Null space). The null space of a matrix A ∈ Rn×n, denoted as N (A), is the vector
space

{x ∈ Rn : Ax = 0}

The dimension of the null space is called nullity of the matrix.

Fact 19. The following is true:

N
(
AAT

)
= N

(
AT
)

; R
(
AAT

)
= R (A)

5.3 Determinants

Determinants were originally introduced for solving linear equations in the form of Ax = y, with a
square A. They are cumbersome to compute for high-order matrices, but their definitions and concepts
are partially very important.

We review only the computations of second- and third-order matrices

• 2× 2 matrices:

det

[
a b
c d

]
= ad− bc

• 3× 3 matrices:

det

 a b c
d e f
g h k

 = a det

[
e f
h k

]
− b det

[
d f
g k

]
+ c det

[
d e
g h

]
= aek + bfg + cdh− gec− bdk − ahf

where det

[
e f
h k

]
, det

[
d f
g k

]
, and det

[
d e
g h

]
are called the minors of det

 a b c
d e f
g h k

.
Caution: det (cA) = cn det (A) (note c det (A)!)

Theorem 20. The determinant of A is nonzero if and only if A is full rank.

You should be able to verify the theorem for 2× 2 matrices. The proof will be immediate after we
learn the concept of eigenvalues.

Definition 21. A linear transformation is called singular if the determinant of the corresponding trans-
formation matrix is zero.
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Fact 22. Determinant facts:

• If A and B are square matrices, then

det (AB) = det (BA) = detA detB

det (A) = det
(
AT
)

• If X and Z are square, Y with compatible dimensions, then

det

([
X Y
0 Z

])
= detX detZ

6 Matrix and linear equations

Matrices are extremely important for solving linear equations. The standard form of a linear equation
is given by

Ax = y (21)

• Existence of solutions requires that
y ∈ R (A)

• The linear equation is called overdetermined if it has more equations than unknowns (i.e. A
is a tall skinny matrix), determined if A is square, undetermined if it has fewer equations than
unknowns (A is a wide matrix).

• Solutions of the above equation, provided that they exist, is constructed from

x = xo + z : Az = 0 (22)

where x0 is any (fixed) solution of (21) and z runs through all the homogeneous solutions of
Az = 0, namely, z runs through all vectors in the null space of A.

• Uniqueness of a solution: if the null space of A is zero, the solution is unique.

You should be familiar with solving 2nd or 3rd-order linear equations by hand.
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7 Eigenvector and eigenvalue

Eigenvalue problems rise all the time in engineering, physics, mathematics, biology, economics, and
many other areas.

7.1 Matrix, mappings, and eigenvectors

Think of Ax this way: A defines a linear operator; Ax is a vector produced by feeding the vector x to
this linear operator. In the two-dimensional case, we can look at Fig. 1. Certainly, Ax does not (at all)
need to be in the same direction as x. An example is

A0 =

[
1 0
0 0

]
which gives that

A0

[
x1

x2

]
=

[
x1

0

]
namely, Ax is x projected on the first axis in the two-dimensional vector space, which will not be in
the same direction as x as long as x2 6= 0. From here comes the concept of eigenvectors. It says that

Figure 1: Example relationship between x and Ax

there are certain “special directions/vectors” (denoted as v1 and v2 in our two-dimensional example)
for A such that Avi = λivi. Thus Avi is on the same line as the original vector vi, just scaled by
the eigenvalue λi. It can be shown that if λ1 6= λ2, then v1 and v2 are linearly independent (your
homework). This is saying that any vector in R2 can be decomposed as

x = a1v1 + a2v2

Therefore
Ax = a1Av1 + a2Av2 = a1λ1v1 + a2λ2v2

Knowing λi and vi thus can directly tell us how Ax looks like. More important, we have decomposed
Ax into small modules that are from time to time more handy for analyzing the system properties.
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Figure 2: Decomposition of x

Figure 3: Construction of Ax

Figs. 2 and 3 demonstrate the above idea graphically. Notes: the above are for matrices with distinct
real eigenvalues.

The geometric interpretation above makes eigenvalue a very important concept. Eigenvalues are
also called characteristic values of a matrix. The set of all the eigenvalues of A is called the spectrum
of A. The largest of the absolute values of the eigenvalues of A is called the spectral radius of A.

Example 23 (Eigenvector in control systems analysis). Consider the equation x (k + 1) = Ax (k).
This defines a discrete-time state dynamics in control systems. The following are then true: if x (0) is
in the direction of some eigenvector vi, then

(a) x (1) will be on the same line with vi.
(b) x (k) will always be along the line with vi for k ≥ 0.

Example 24 (Natural frequencies in general dynamic system ). For a second order ODE such as
ÿ + ω2y = 0 (ω > 0), we know that the response y (x) = A1e

jωx + A2e
−jωx and we often write

y (x) = A sinωx+B cosωx. The response is oscillatory with natural frequency ω.
Consider a general dynamic system

Mẍ+Kx = 0

where M and K are square matrices; M is invertible, and x is a vector with compatible dimension.
The concept of natural frequency radily extends here. Let

x = vejωt
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where v is a vector that has the same size as x; ω is called the natural frequency of the system. Then

−Mω2vejωt +Kvejωt = 0

in other words, (
K −Mω2

)
vejωt = 0⇔

(
K −Mω2

)
v = 0 (since ejωt 6= 0)

M is invertible, so the above condition is equivalent to

M−1Kv = ω2v

Hence, the square of the natural frequency is simply the eigenvalue of the matrix M−1K.

Exercise. The system

 15
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and find the eigenvalues, 2ω , and the corresponding eigenvectors (i.e., mode shapes). 
 

has the equation of motion[
m 0
0 m

] [
ẍ1

ẍ2

]
+

[
2k −k
−k 2k

] [
x1

x2

]
= 0

Find the natural frqeuencies and the corresponding eigenvectors (called the mode shapes)

7.2 Computation of eigenvalue and eigenvectors

Formally, eigenvalue and eigenvector are defined as follows. For A ∈ Rn×n, an eigenvalue λ of A is one
for which

Ax = λx (23)

has a nonzero solution x 6= 0. The corresponding solutions are called eigenvectors of A.
(23) is equivalent to

(A− λI)x = 0 (24)

As x 6= 0, the matrix A− λI must be singular, so

det (A− λI) = 0 (25)

det (A− λI) is a polynomial of λ, called the characteristic polynomial. Correspondingly, (25) is
called the characteristic equation. So eigenvalues are roots of the characteristic equation. If an n× n
matrix A has n eigenvalues λ1, . . . , λn, it must be that

det (A− λI) = (λ1 − λ) · · · (λn − λ)

After obtaining an eigenvalue λ, we can find the associated eigenvector by solving (24). This is
nothing but solving a homogeneous system.
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Example 25. Consider

A =

[
−5 2
2 −2

]
Then

det (A− λI) = 0⇒ det

([
−5− λ 2

2 −2− λ

])
= 0

⇒ (5 + λ) (2 + λ)− 4 = 0

⇒ λ = −1 or − 6

So A has two eigenvalues: −1 and −6. The characteristic polynomial of A is λ2 + 7λ+ 6.
To obtain the eigenvector associated to λ = −1, we solve

(A− λI)x = 0⇔
([
−5 2
2 −2

]
+ 1

[
1 0
0 1

])
x =

[
−4 2
2 −1

]
x = 0

One solution is

x =

[
1
2

]
As an exercise, show that an eigenvector associated to λ = −6 is

[
2 −1

]T .
Example 26 (Multiple eigenvectors). Obtain the eigenvalues and eigenvectors of

A =

 −2 2 −3
2 1 −6
−1 −2 0


Analogous procedures give that

λ1 = 5, λ2 = λ3 = −3

So there are repeated eigenvalues. For λ2 = λ3 = −3, the characteristic matrix is

A+ 3I =

 1 2 −3
2 4 −6
−1 −2 3


The second row is the first row multiplied by 2. The third row is the negative of the first row. So the
characteristic matrix has only rank 1. The characteristic equation

(A− λ2I)x = 0

has two linearly independent solutions  −2
1
0

 ,
 3

0
1
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Theorem 27 (Eigenvalue and determinant). Let A ∈ Rn×n. Then

detA =
n∏
i=1

λi

The result can be understood as follows. Consider the characteristic polynomial

p (λ) = det (A− λI) = (λ1 − λ) (λ2 − λ) . . .

Letting λ = 0 gives

det (A) = p (0) =
n∏
i=1

λi

Example 28. For the two-dimensional case

A =

[
a11 a12

a21 a22

]
⇒ p (λ) = det (A− λI) = (a11 − λ) (a22 − λ)− a12a21

On the other hand
p (λ) = (λ1 − λ) (λ2 − λ)

Matching the coefficients we get

λ1 + λ2 = a11 + a22

λ1λ2 = a11a22 − a12a21

Eigenvalue finding for high-order matrices is a nasty problem, due to the numerical and algebraical
difficulty in polynomial root finding:

Theorem 29 (Abel Ruffini theorem, a.k.a. Abel’s impossibility theorem, mainly due to Niels Henrik
Abel, 1824). No formula can exist for expressing the roots of an arbitrary polynomial of degree 5 or
higher, given its coefficients.

Hence, for high-order problems, polynomial root finders must rely on iterative methods.

7.3 *Complex eigenvalues

Complex eigenvalues always appear in pairs, as

Aei = λiei

⇔ Aēi = λ̄iēi

Let us consider the eigenvalues

λi = σi + jωi

λ̄i = σi − jωi
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and write the eigenvectors as

ei = e1
i + je2

i

ēi = e1
i − je2

i

To get a geometric picture of complex eigenvalues. Consider

x0 = e1
i =

1

2
(ei + ēi)

and compute

Ax0 = e1
i =

1

2
(Aei + Aēi) = Re {Aei} = Re {λiei} = σie

1
i − ωie2

i

Thus the response is the direction of a linear combination of e1
i and e

2
i .
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7.4 Eigenbases. Diagonalization

Eigenvectors of an n × n matrix A may (or may not!) form a basis for Rn. If we are interested in a
transformation y = Ax, such an “eigenbasis” (basis of eigenvectors), if exists, is of great advantage
because then we can represent any x in Rn uniquely as a linear combination of the eigenvectors x1, . . .
, xn, say, x = c1x1 + c2x2 + . . . + cnxn. And, denoting the corresponding (not necessarily distinct)
eigenvalues of the matrix A by λ1, . . . , λn, we have Axj = λjxj, so that we simply obtain

y = Ax = A (c1x1 + c2x2 + . . . + cnxn)

= c1Ax1 + c2Ax2 + · · ·+ cnAxn

= c1λ1x1 + · · ·+ cnλnxn

This shows that we have decomposed the complicated action of A on an arbitrary vector x into a sum
of simple actions (multiplication by scalars) on the eigenvectors of A.

Theorem 30 (Basis of Eigenvectors). If an n× n matrix A has n distinct eigenvalues, then A has a
basis of eigenvectors x1, . . . , xn for Rn.

Proof. We just need to prove that the n eigenvectors are linearly independent. If not, reorder the
eigenvectors and suppose r of them, {x1, x2, . . . , xr}, are linearly independent and xr+1, . . . , xn are
linearly dependent on {x1, x2, . . . , xr}. Consider xr+1. There must exist c1, . . . cn+1, not all zero, such
that

c1x1 + . . . cr+1xr+1 = 0 (26)

Multiplying A on both sides yields

c1Ax1 + . . . cr+1Axr+1 = 0

Using Axi = λixi, we have
c1λ1x1 + · · ·+ cr+1λr+1xr+1 = 0

But from (26) we know
c1λr+1x1 + . . . cr+1λr+1xr+1 = 0

Subtracting the last two equations gives

c1 (λ1 − λr+1)x1 + · · ·+ cr (λr − λr+1)xr = 0

None of λ1 − λr+1, . . . , λr − λr+1 are zero, as the eigenvalues are distinct. Hence not all coefficients
c1 (λ1 − λr+1) , . . . , cr (λr − λr+1) are zero. Thus {x1, x2, . . . , xr} is not linearly independent–a con-
tradiction with the assumption at the beginning of the proof.

Theorem 30 provides an important decomposition–called diagonalization–of matrices. To show that,
we briefly review the concept of matrix inverses first.

Definition 31 (Matrix Inverse). The inverse A−1 of a square matrix A satisfies

AA−1 = A−1A = I
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If A−1 exists, A is called nonsingular; otherwise, A is singular.

Theorem 32 (Diagonalization of a Matrix). Let an n × n matrix A have a basis of eigenvectors
{x1, x2, . . . , xn}, associated to its n distinct eigenvectors {λ1, λ2, . . . , λn}, respectively. Then

A = XDX−1 = [x1, x2, . . . , xn]


λ1 0 . . . 0

0 λ2

. . .
...

...
. . .

. . . 0
0 . . . 0 λn

 [x1, x2, . . . , xn]−1 (27)

Also,
Am = XDmX−1, (m = 2, 3, . . . ). (28)

Remark 33. From (28), you can find some intuition about the benefit of (27): Am can be tedious to
compute while Dm is very simple!

Proof. From Theorem 30, the n linearly independent eigenvectors of A form a basis. Write

Ax1 = λ1x1

Ax2 = λ2x2

...

Axn = λnxn

as

A [x1, x2, . . . , xn] = [x1, x2, . . . , xn]


λ1 0 . . . 0

0 λ2

. . .
...

...
. . .

. . . 0
0 . . . 0 λn


The matrix [x1, x2, . . . , xn] is square. Linear independence of the eigenvectors implies that [x1, x2, . . . , xn]
is invertible. Multiplying [x1, x2, . . . , xn]−1 on both sides gives (27).

(28) then immediately follows, as

Am =
(
XDX−1

)m
= XDX−1XDX . . .XDX−1 = XDmX−1

Example 34. Let

A =

[
2 −3
1 −2

]
The matrix has eigenvalues at 1 and -1, with associated eigenvectors[

3
1

]
,

[
1
1

]
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Then

X =

[
3 1
1 1

]
, A = X

[
1 0
0 −1

]
X−1

Now if we are to compute A3000. We just need to do

A3000 = X

[
1 0
0 −1

]3000

X−1 = I

7.4.1 *Basis of eigenvectors in the presence of repeated eigenvalues

For the case of distinct eigenvalues, the entire vector space can be expanded by

Rn = N (A− λ1I)⊕N (A− λ2I)⊕N (A− λ3I) . . .

When there are repeated eigenvalues, we have instead

Rn = N
{

(A− λ1I)d1
}
⊕N

{
(A− λ2I)d2

}
⊕ . . .

For two-dimensional cases, we need to find N
{

(A− λ1I)2}
Firstly,

N {(A− λI)} ⊆ N
{

(A− λI)d
}

Now, suppose we have found t1 ∈ N {(A− λI)}, i.e.,

(A− λI) t1 = 0

if
(A− λI) t2 = t1

then
(A− λI)2 t2 = (A− λI) t1 = 0

Hence, for two-dimensional cases, the two special directions are

• t1, which gives At1 = λt1, namely, the output is in the same direction as input.

• t2, which gives At2 = λt2 + t1, namely, the output is in the direction of t2 plus t1. The result
is not as convenient as the first case, but still powerful: there is no scaling in t1–the change of
direction is always due to t2 alone.

7.5 *Additional facts and properties

• eigenvalues are continuous functions of the entries of the matrix
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• the minimum eigenvalue can be computed via solving a convex optimization problem

λmin (Q) = min :Tr (QX)

subject to :X � 0

Tr (X) = 1

where Tr () is the trace operator.

• a square matrix is called Hurwitz if all of its eigenvalues have negative real parts

• a square matrix is called Schur if all of its eigenvalues have absolute values that are less than 1

8 Similarity transformation

Definition 35 (Similar Matrices. Similarity Transformation). An n × n matrix Â is called similar to
an n× n matrix A if

Â = T−1AT

for some nonsingular n×n matrix T . This transformation, which gives Â from A, is called a similarity
transformation.

Let S1 and S2 be two vector spaces of the same dimension. Take the same point P . Let u be its
coordinate in S1 and û be its coordinate in S2. These coordinates in the two vector spaces are related
by some linear transformation T :

u = T û, û = T−1u

Consider Fig. 4. Let the point P go through a linear transformation A in the vector space S1

to generate an output point Po. Po is physically the same point in both S1 and S2. However, the
coordinates of Po are different: if we see it from “standing inside” S1, then

y = Au

If we see it in S2, then the coordinate is some other value ŷ. How does the linear transformation A

Figure 4: Same points in different vector spaces
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mathematically “look like” in S2?
Result:

ŷ = T−1y = T−1Au =
(
T−1AT

)
û

namely, the linear transformation, viewed from S2, is

Â = T−1AT

It is central to recognize that the physical operation is the same: P goes to another point Po.
Different is our perspective of viewing this transformation. Â and A are in this sense called similar.

Purpose of doing similarity transformation: Â can be simpler! Consider, for instance, the following
example

In S1, the transformation changes both coordinates of P while in S2, only the first coordinate of P
is changed.

Theorem 36 (Eigenvalues and Eigenvectors of Similar Matrices). If Â is similar to A, then Â has the
same eigenvalues as A. Furthermore, if x is an eigenvector of A, then y = T−1x is an eigenvector of
Â corresponding to the same eigenvalue.

9 Matrix inversion

This section provides a more detailed description of matrix inversion. Recall that the inverse A−1 of a
square nonsingular matrix A satisfies

AA−1 = A−1A = I

Theorem 37 (Inverse is unique). If A has an inverse, the inverse is unique.

Hint of proof: if both B and C are inverses of A, then BA = AB = I and CA = AC = I so that

B = IB = (CA)B = CAB = C (AB) = CI = C

Connection with previous topics: The set of all n × n matrices is not a field. Multiplicative inverse is
unique.
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Definition 38 (Existence of a matrix inverse). The inverse A−1 of an n × n matrix A exists if and
only if the rank of A is n. Hence A is nonsingular if rank(A) = n, and singular if rank(A) < n.

Proof. Let A ∈ Rn×n and consider the linear equation

Ax = b

If A−1 exists, then
A−1Ax = x = A−1b

Hence A−1b is a solution to the linear equation. It is also unique. If not, then take another solution u;
we should have Au = b and u = A−1b. Since A−1 is unique, it must be that u = x.

Conversely, if A has rank n. Then we can solve Ax = b uniquely by Gauss elimination, to get

x = Bb

where B is the backward substitution linear transformation in Gauss elimination. Hence

Ax = A (Bb) = (AB) b = Ib

for any b. Hence
AB = I

Similarly, substituting Ax = b into x = Bb gives

x = B (Ax) = (BA)x = Ix

and hence
BA = I

Together B = A−1 exists.

There are several ways to compute the inverse of a matrix. One approach for low-order matrices is
the method of using adjugate matrix (sometimes also called adjoint matrix):

A−1 =
1

det (A)
adj (A)T

We explain the computation by two examples. You can find additional details in your undergraduate
linear algebra course.

• 2× 2 example: [
a b
c d

]−1

=
1

ad− bc

[
(−1)1+1 d (−1)1+2 b

(−1)2+1 c (−1)2+2 a

]
where b in (−1)1+2 b is obtained by:

– noticing b is at row 1 column 2 of A;

– looking at the element at row 2 column 1 of A (notice the transpose in adj (A)T );
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– constructing a submatrix of A by removing row 2 and column 1 from it, i.e., [b] in this 2×2
example;

– computing the determinant of this submatrix.

– adding (−1)1+2 as a scalar

• 3× 3 example:

A−1 =

 a b c
d e f
g h k

−1

=
1

detA



∣∣∣∣ e f
h k

∣∣∣∣ −
∣∣∣∣ b c
h k

∣∣∣∣ ∣∣∣∣ b c
e f

∣∣∣∣
−
∣∣∣∣ d f
g k

∣∣∣∣ ∣∣∣∣ a c
g k

∣∣∣∣ −
∣∣∣∣ a c
d f

∣∣∣∣∣∣∣∣ d e
g h

∣∣∣∣ −
∣∣∣∣ a b
g h

∣∣∣∣ ∣∣∣∣ a b
d e

∣∣∣∣


where |·| denotes the determinant of a matrix. Similar as before, the row 1 column 2 element

−
∣∣∣∣ b c
h k

∣∣∣∣ is obtained via

(−1)2+1 det

A with [d, e, f ] ,

 a
d
g

 removed


Example 39. Find the inverse matrices of

A =

[
3 1
2 4

]
, B =

 −1 1 2
3 −1 1
−1 3 4

 , C =

 −0.5 0 0
0 4 0
0 0 1


The answers are:

A−1 =

[
0.4 −0.1
−0.2 0.3

]
, B−1 =

 −0.7 0.2 0.3
−1.3 −0.2 0.7
−1 3 4

 , C−1 =

 −2 0 0
0 0.25 0
0 0 1


The related MATLAB command for matrix inversion is inv().

Theorem 40. Inverse of products of matrices can be obtained from inverses of each factor:

(AB)−1 = B−1A−1

and more generally
(AB . . . Y Z)−1 = Z−1Y −1 . . . B−1A−1 (29)
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Proof. By definition (AB) (AB)−1 = I. Multiplying A−1 on both sides from the left gives

B (AB)−1 = A−1

Now multiplying the result by B−1 on both sides from the left, we get

(AB)−1 = B−1A−1

The general case (29) follows by induction.

Fact 41. *Inverse of upper (lower) triangular matrices are upper (lower) triangular

Proof. (main idea) We can either use the adjoint matrix method or use the following decomposition of
upper(lower) triangular matrices

A = D (I +N)

where D is diagonal and N is strictly upper (lower) triangular with zeros diagonal elements. Then using
matrix Taylor expansion we have

A−1 = (I +N)−1D−1

=
(
I −N +N2 −N3 +N4 − . . .

)
D−1

N is nilpotent: Nk are upper (lower) triangular and Nn = 0 for n larger than the row dimension of A.
D−1 is diagonal. Hence A−1 is upper (lower) triangular.

9.1 Block matrix decomposition and inversion

Consider

A =

[
3 4
1 2

]
Recall the key step in performing row operations on matrices in Gauss elimination:[

3 4
1 2

]
→
[

3 4
0 2/3

]
where we had substracted one third of the first row in the second row. In matrix representations, the
above looks like [

1 0
−1/3 1

] [
3 4
1 2

]
=

[
3 4
0 2/3

]
For more general two by two matrices, we have[

1 0
−ca−1 1

] [
a b
c d

]
=

[
a b
0 d− ca−1b

]
If we want to keep the second row unchanged and simplify the first row, we can do[

1 −bd−1

0 1

] [
a b
c d

]
=

[
a− bd−1c 0

c d

]
33



Xu Chen Matrix, Linear Algebra September 29, 2019

Generalizing the concept to blok matrices (with compatible dimensions), we have[
I 0

−BTA−1 I

] [
A B
BT C

]
=

[
A B
0 C −BTAB

]
and [

A B
0 C −BTAB

] [
I −A−1B
0 I

]
=

[
A 0
0 C −BTAB

]
Thus [

I 0
−BTA−1 I

] [
A B
BT C

] [
I −A−1B
0 I

]
=

[
A 0
0 C −BTAB

]
Inversion is now very easy:{[

I 0
−BTA−1 I

] [
A B
BT C

] [
I −A−1B
0 I

]}−1

=

[
A 0
0 C −BTAB

]−1

=⇒
[
I −A−1B
0 I

]−1 [
A B
BT C

]−1 [
I 0

−BTA−1 I

]−1

=

[
A 0
0 C −BTAB

]−1

and hence [
A B
BT C

]−1

=

[
I −A−1B
0 I

] [
A 0
0 C −BTAB

]−1 [
I 0

−BTA−1 I

]
=

[
I −A−1B
0 I

] [
A−1 0

0
(
C −BTAB

)−1

] [
I 0

−BTA−1 I

]
The above steps work for general partitioned 2 by 2 matrices as well. The result is as follows[

I 0
−CA−1 I

] [
A B
C D

] [
I −BA−1

0 I

]
=

[
A 0
0 D − CA−1B

]
[
A B
C D

]−1

=

[
I −BA−1

0 I

] [
A 0
0 D − CA−1B

]−1 [
I 0

−CA−1 I

]
or[
I −BD−1

0 I

] [
A B
C D

] [
I 0

−D−1C I

]
=

[
A−BD−1C 0

0 D

]
[
A B
C D

]−1

=

[
I −BD−1

0 I

] [
A−BD−1C 0

0 D

]−1 [
I 0

−D−1C I

]

9.2 *LU and Cholesky decomposition

Fact 42. The following is true for upper and lower triangular matrices:[
I 0
M I

]−1

=

[
I 0
−M I

]
[
I M
0 I

]−1

=

[
I −M
0 I

]
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From the last section[
I 0

−CA−1 I

] [
A B
C D

] [
I −BA−1

0 I

]
=

[
A 0
0 D − CA−1B

]
Applying Fact 42 to the last equation gives the block LU decomposition:[

A B
C D

]
=

[
I 0

CA−1 I

] [
A 0
0 D − CA−1B

] [
I A−1B
0 I

]
=

[
I 0

CA−1 I

] [
A B
0 D − CA−1B

]
which shows any square matrix can be decomposed into the product of a lower triangular matrix and
an upper triangular matrix.

There is also block Cholesky decomposition[
A B
C D

]
=

[
I

CA−1

]
A
[
I A−1B

]
+

[
0 0
0 D − CA−1B

]
or using half matrices[

A B
C D

]
=

[
A

1
2

CA−
∗
2

] [
A

∗
2 A−

1
2B

]
+

[
0 0

0 Q
1
2

] [
0 0
0 Q

∗
2

]
Q = D − CA−1B

where
A

1
2A

∗
2 = A, Q

1
2Q

∗
2 = Q

hence [
A B
C D

]
= LU

where

LU =

[
A

1
2 0

CA−
∗
2 0

] [
A

∗
2 A−

1
2B

0 0

]
+

[
0 0

0 Q
1
2

] [
0 0
0 Q

∗
2

]
=

[
A

1
2 0

CA−
∗
2 Q

1
2

] [
A

∗
2 A−

1
2B

0 Q
∗
2

]

9.3 Determinant and matrix inverse identity

Although AB 6= BA in general, the determinants of products have the following property:

det (AB) = det (BA) = detA detB

where A and B should be square to start with.

Theorem 43 (Sylvester’s determinant theorem). For A ∈ Rm×n and B ∈ Rn×m,

det (Im + AB) = det (In +BA)

where Im and In are the m×m and n× n identity matrices, respectively.
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Proof. Construct

M =

[
Im −A
B In

]
From the decomposition

M =

[
Im 0
B In

] [
Im −A
0 In +BA

]
we have

detM = det (In +BA)

Alternatively

M =

[
Im + AB −A

0 In

] [
Im 0
B In

]
hence

detM = det (Im + AB)

Therefore
det (Im + AB) = detM = det (In +BA)

More generally, for any invertible m×m matrix X

det (X + AB) = det (X) det
(
In +BX−1A

)
which comes from

X + AB = X
(
I +X−1AB

)
⇒ det (X + AB) = det

[
X
(
I +X−1AB

)]
= detX det

(
I +X−1AB

)
9.4 Matrix inversion lemma

Fact 44 (Matrix inversion lemma). Assume A is nonsingular and (A+BC)−1 exists. The following is
true

(A+BC)−1 = A−1
(
I −B

(
CA−1B + I

)−1
CA−1

)
(30)

Proof. Consider
(A+BC)x = y

We aim at getting x = (∗) y, where (∗) will be our (A+BC)−1. First, let

Cx = d

We have

Ax+Bd = y

Cx− d = 0
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Solving the first equation yields
x = A−1 (y −Bd)

Then
CA−1 (y −Bd) = d

gives
d =

(
CA−1B + I

)−1
CA−1y

Hence

x = A−1
(
y −B

(
CA−1B + I

)−1
CA−1y

)
= A−1

(
I −B

(
CA−1B + I

)−1
CA−1

)
y

and (30) follows.

Exercise 45. The matrix inversion lemma is a powerful tool useful for many applications. One appli-
cation in adaptive control and system identification uses(

A+ φφT
)−1

= A−1

(
I − φφTA−1

φTA−1φ+ 1

)
Prove the above result. Prove also the general case (called rank one update):(

A+ bcT
)

= A−1 − 1

1 + cTA−1b

(
A−1b

) (
cTA−1

)
9.5 Special inverse equalities

Fact 46. The following matrix equalities are true

• (I +GK)−1G = G (I +KG)−1

to prove the result, start with G (I +KG) = (I +GK)G

• GK (I +GK)−1 = G (I +KG)−1K = (I +GK)−1GK (proof uses the first equality twice)

• generalization 1: (σ2I +GK)
−1
G = G (σ2I +KG)

−1

• generalization 2: if M is invertible then (M +GK)−1G = M−1G (I +KM−1G)
−1

Exercise 47. Check validity of the following equality, assuming proper dimensions and invertibility of
matrices:

• Z (I + Z)−1 = I − (I + Z)−1

• (I +XY )−1 = I −XY (I +XY )−1 = I −X (I + Y X)−1 Y

• extension(
I +XZ−1Y

)−1
= I −XZ−1Y

(
I +XZ−1Y

)−1
= I −XZ−1

(
I + Y XZ−1

)−1
Y

= I −X (Z + Y X)−1 Y
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10 Spectral mapping theorem

Theorem 48 (Spectral Mapping Theorem). Take any A ∈ Cn×n and a polynomial (in s) f (s) (more
generally, analytic functions). Then

eig (f (A)) = f (eig (A))

Proof. Let
f (A) = x0I + x1A+ x2A

2 + . . .

Let λ be an eigenvalue of A. We first observe that λn is an eigenvalue of An. This can be seen from
det (λnI − An) = det [(λI − A) p (A)] = det (λI − A) det (p (A)) where p (A) is a polynomial of A.

Now consider f (λ) = x0 + x1λ+ x2λ
2 + . . . .

det (f (λ) I − f (A)) = det
[
x1 (λI − A) + x2

(
λ2I − A2

)
+ x3

(
λ3I − A3

)
+ . . .

]
= det [(λI − A) q (A)]

= det (λI − A) det (q (A))

Hence f (λ) is an eigenvalue of f (A).
Conversely, if γ is an eigenvalue of f (A), we need to prove that γ is in the form of f (λ). Factorize

the polynomial
f (λ)− γ = a0 (λ− α1) (λ− α2) . . . (λ− αn)

On the other hand, we note that as a matrix polynomial with the same coefficients:

f (A)− γI = a0 (A− α1I) (A− α2I) . . . (A− αnI)

But det (f (A)− γI) = 0, which means that there is at least one αi such that

det (A− αiI) = 0

which says that αi is an eigenvalue of A. Hence

f (λ)− γ = a0 (λ− αi)
∏
k 6=i

(λ− αk) = 0

i.e.
γ = f (λ)

where λ is an eigenvalue of A.

Example 49. Compute the eigenvalues of

A =

[
99.8 2000
−2000 99.8

]
Solution:

A = 99.8I + 2000

[
0 1
−1 0

]
So

eig(A) = 99.8 + 2000 eig

[
0 1
−1 0

]
= 99.8± 2000i
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11 Inner product

11.1 Inner product spaces

Basics: Inner product, or dot product, brings a metric for vector lengths. It takes two vectors and
generates a number. In Rn, we have

〈a, b〉 , aT b = [a1, a2, . . . , an]


b1

b2

...
bn


Clearly, 〈a, b〉 , aT b = 〈b, a〉. Letting b = a above, we get the square of the length of a:

||a|| =
√
a2

1 + a2
2 + · · ·+ a2

n

Formal definitions:

Definition 50. A real vector space V is called a real inner product space, if for any vectors a and b in
V there is an associated real number 〈a, b〉, called the inner product of a and b, such that the following
axioms hold:

• (linearity) For all scalars q1 and q2 and all vectors a, b, c ∈ V

〈q1a+ q2b, c〉 = q1 〈a, b〉+ q2 〈b, c〉

• (symmetry) ∀a, b ∈ V
〈a, b〉 = 〈b, a〉

• (positive definiteness) ∀a ∈ V
〈a, a〉 ≥ 0

where 〈a, a〉 = 0 if and only if a = 0.

Definition 51 (2-norm of vectors). The length of a vector in V is defined by

||a|| =
√
〈a, a〉 ≥ 0

For Rn,
||a|| =

√
aTa =

√
a2

1 + a2
2 + · · ·+ a2

n

This is the Euclidean norm or 2-norm of the vector. Rn equiped with the inner product 〈a, b〉 =
√
aT b

is called the n-dimensional Euclidean space.
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Example 52 (Inner product for functions, function spaces). The set of all real-valued continuous
functions f (x), g (x), . . . x ∈ [α, β] is a real vector space under the usual addition of functions and
multiplication by scalars. An inner product on this function space is

〈f, g〉 =

∫ β

α

f (x) g (x) dx

and the norm of f is

||f (x) || =

√∫ β

α

f (x)2 dx

Inner products is also closely related to the geometric relationships between vectors. For the two-
dimensional case, it is readily seen that

v1 =

[
1
0

]
, v2 =

[
0
1

]
is a basis of the vector space. The two vectors are additionally orthogonal, by direct observation.

More generally, we have:

Definition 53 (Orthogonal vectors). Vectors whose inner product is zero are called orthogonal.

Definition 54 (Orthonormal vectors). Orthogonal vectors with unity norm is called orthonormal.

Definition 55. The angle between two vectors is defined by

cos∠ (a, b) =
〈a, b〉
||a|| · ||b||

=
〈a, b〉√

〈a, a〉 ·
√
〈b, b〉

11.2 Trace (standard matrix inner product)

The trace of an n× n matrix A = [ajk] is given by

Tr (A) =
n∑
i=1

aii (31)

Trace defines the so-called matrix inner product:

〈A,B〉 = Tr
(
ATB

)
= Tr

(
BTA

)
= 〈B,A〉 (32)
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which is closely related to vector inner products. Take an example in R3×3: write the matrices in the
column-vector form B = [b1,b2,b3] , A = [a1, a2, a3], then

ATB =

 aT1 b1 ∗ ∗
∗ aT2 b2 ∗
∗ ∗ aT3 b3

 (33)

So
Tr
(
ATB

)
= aT1 b1 + aT2 b2 + aT3 b3

which is nothing but the inner product of the two “stacked” vectors

 a1

a2

a3

 and

 b1

b2

b3

. Hence

〈A,B〉 = Tr
(
ATB

)
=

〈 a1

a2

a3

 ,
 b1

b2

b3

〉

Exercise 56. If x is a vector, show that

Tr(xxT ) = xTx
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12 Norms

Previously we have used || · || to denote the Euclidean length function. At different times, it is useful
to have more general notions of size and distance in vector spaces. This section is devoted to such
generalizations.

12.1 Vector norm

Definition 57. A norm is a function that assigns a real-valued length to each vector in a vector space
Cm. To develop a reasonable notion of length, a norm must satisfy the following properties: for any
vectors a, b and scalars α ∈ C,

• the norm of a nonzero vector is positive: ||a|| ≥ 0, and ||a|| = 0 if and only if a = 0

• scaling a vector scales its norm by the same amount: ||αa|| = |α| ||a||

• triangle inequality: ||a+ b|| ≤ ||a||+ ||b||

Let w1 be a n× 1 vector. The most important class of vector norms, the p norms, of w are defined by

||w||p =

(
n∑
i=1

|xi|p
)1/p

, 1 ≤ p <∞

Specifically, we have

‖w‖1 =
∑n

i=1 |wj| (absolute column sum)

‖w‖∞ = maxi |wi|

‖w‖2 =
√
wHw (Euclidean norm)

Remark 58. When unspecified, || · || refers to 2 norm in this set of notes.

Intuitions for the infinity norm By definition

||w||∞ = lim
p→∞

(
n∑
i=1

|wi|p
)1/p

Intuitively, as p increases, maxi |wi| takes more and more weighting in
∑n

i=1 |wi|p. More rigorously, we
have

lim
p→∞

((max |wi|)p)1/p ≤ lim
p→∞

(
n∑
i=1

|wi|p
)1/p

≤ lim
p→∞

(
n∑
i=1

(max |wi|)p
)1/p

Both limp→∞ ((max |wi|)p)1/p and limp→∞ (
∑n

i=1 (max |wi|)p)1/p equals maxi |wi|. Hence ||w||∞ =
max |wi|
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12.2 Induced matrix norm

As matrices define linear transformations between vector spaces, it makes sense to have a measure of
the “size” of the transformation. Induced matrix norms4 are defined by

||M ||p←q = max
x 6=0

||Mx||p
||x||q

(34)

In other words, ||M ||q←q is the maximum factor by which M can “stretch” a vector x.
In particular, the following matrix norms are common:

‖M‖1←1 = maxj
∑n

i=1 |Mij| maximum absolute column sum

‖M‖∞←∞ = maxi
∑m

j=1 |Mij| maximum absolute row sum

‖M‖2←2 =
√
λmax (M∗M) maximum singular value

The induced 2 norm can be understood as follows:

||M ||2←2 = max
x 6=0

||Mx||2
||x||2

= max
x 6=0

√
x∗M∗Mx

〈x, x〉2
=
√
λmax (M∗M)

Remark 59. When p = q in (34), often the induced matrix norm is simply written as ||M ||p.

12.3 Frobenius norm and general matrix norms

Matrix norms do not have to be induced by vector norms.

Formal definition: Let Mn be the set of all n × n real- or complex-valued matrices. We call a
function || · || :Mn → R a matrix norm if for all A,B ∈Mn it satisfies the following axioms:

1. ||A|| ≥ 0

2. ‖A‖ = 0 if and only if A = 0

3. ||cA‖ = |c|‖A‖ for all complex scalars c

4. ‖A+B‖ ≤ ‖A‖+ ‖B‖

5. ‖AB‖ ≤ ‖A‖‖B‖

The formal definition of matrix norms is slightly amended from vector norms. This is because although
Mn is itself a vector space of dimension n2, it has a natural multiplication operation that is obsent in
regular vector spaces. A vector norm on matrices that satisfies the first four axioms and not necessarily
axiom 5 is often called a generalized matrix norm.

4It is ’induced’ from other vector norms as shown in the definition.
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Frobenius norm: The most important matrix norm which is not induced by a vector norm is the
Frobenius norm, defined by

‖A‖F ,
√

Tr (A∗A) =
√
< A,A > =

√∑
i,j

|ai,j|2

Frobenius norm is just the Euclidean norm of the matrix, written out as a long column vector:

||A||F = (Tr (A∗A))
1
2 =

(
m∑
i=1

m∑
j=1

|ai,j|2
) 1

2

We also have bounds for Frobenius norms:

||AB||2F ≤ ||A||2F ||B||2F

Transfoming from one matrix norm to another:

Theorem 60. If || · || is a matrix norm onMn and if S ∈Mn is nonsingular, then

||A||S = ||S−1AS|| ∀A ∈Mn

is a matrix norm.

Exercise 61. Prove Theorem 60.

12.4 Norm inequalities

1. Cauchy-Schwartz Inequality:
|〈x, y〉| ≤ ||x||2||y||2

which is the special case of the Holder inequality

|〈x, y〉| ≤ ||x||p||y||q,
1

p
+

1

q
= 1, 1 ≤ p, q ≤ ∞ (35)

Both bounds are tight: for certain choices of x and y, the inequalities become equalities.

2. Bounding induced matrix norms:

||AB||l←n ≤ ||A||l←m||B||m←n (36)

which comes from

||ABx||l ≤ ||A||l←m||Bx||m ≤ ||A||l←m||B||m←n||x||n

In general, the bound is not tight. For instance, ||An|| = ||A||n does not hold for n ≥ 2 unless A
has special structures.
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3. (35) and (36) are useful for computing bounds of difficult-to-compute norms. For instance, ||A||22
is expensive to compute but ||A||1 and ||A||∞ are not. As a special case of (36), we have

||A||22 ≤ ||A||1||A||∞
We can obtain an upper bound of ||A||22 by computing ||A||1||A||∞.

4. Any matrix induced norms of A are larger than the absolute eigenvalues of A:

|λ (A) | ≤ ||A||p
Hence as a special case, the spectral radius is upper bounded by any matrix norms:

ρ (A) ≤ ‖A‖

5. Let A ∈Mn and ε > 0 be given. There is a matrix norm such that

ρ (A) ≤ ‖A‖ ≤ ρ (A) + ε

Hint: A can be decomposed as A = U∗∆U where U is unitary and ∆ is upper triangular [Schur
triangulariztion theorem]. Let Dt = diag(t, t2, . . . , tn) and compute

Dt∆D
−1
t =



λ1 t−1d12 . . . . . . t−n+1d1n

0 λ2 t−1d23 . . . t−n+2d1n

...
. . . λ3

. . .
...

. . .
. . .

. . .
...

...
. . .

. . . t−1dn−1,n

0 . . . . . . 0 λn


For t large enough, the sum of the absolute values of the off-diagonal entries is less than ε and
in particular

‖Dt∆D
−1
t ‖1 ≤ ρ (A) + ε

12.5 Exercises

1. Let x be an m vector and A be an m× n matrix. Verify each of the following inequalities, and
give an example when the equality is achieved.

(a) ||x||∞ ≤ ||x||2
(b) ||x||2 ≤

√
m||x||∞

(c) ||A||∞ ≤
√
n||A||2

(d) ||A||2 ≤
√
m||A||∞

2. Let x be a random vector with mean E [x] = 0 and covariance E
(
xxT

)
= I, then

‖A‖2
F = E

[
‖Ax‖2

2

]
Hint: use Exercise 56.
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13 Symmetric, skew-symmetric, and orthogonal matrices

13.1 Definitions and basic properties

A real square matrix A is called symmetric if A = AT ; skew-symmetric if A = −AT .

Fact 62. Any real square matrix A may be written as the sum of a symmetric matrix R and a skew-
symmetric matrix S, where

R =
1

2

(
A+ AT

)
, S =

1

2

(
A− AT

)
If A = [ajk], then the complex conjugate of A is denoted asA = [ajk], i.e., each element

ajk = α + iβ is replaced with its complex conjugate ajk = α− iβ.
A square matrix A is called Hermitian if AT = A; skew-Hermitian if AT = −A.

Example 63. Find the symmetric, skew-symmetric, Hermitian, and skew-Hermitian matrices in the
set: {[

1 2
2 1

]
,

[
1 2i
2i 1

]
,

[
1 2i
−2i 1

]
,

[
0 2
−2 0

]
,

[
0 2 + 2i

2− 2i 0

]}
We introduce one more class of important matrices: a real square matrix A is called orthogonal5

if
ATA = AAT = I (37)

Writing A in the column-vector notation

A = [a1, a2, . . . , an]

we get the equivalent form of (37):

ATA =


aT1
aT2
...
aTn

 [ a1, a2, . . . , an
]

=


aT1 a1 aT1 a2 . . . aT1 an
aT2 a1 aT2 a2 . . . aT2 an
...

...
...

...
aTna1 aTna2 . . . aTnan

 = I

Hence it must be that

aTj aj = 1

aTj am = 0 ∀j 6= m

namely, aj and am are orthonormal for any j 6= m.
The complex version of an orthogonal matrix is the unitary matrix. A square matrix A is called

unitary if AA
T

= A
T
A = I, namely A−1 = A

T
.

Remark 64. Often the complex conjugate transpose A
T
is written as A∗.

5Some people also call use the notion of orthonormal matrix. But orthogonal matrix is more often used (we can say
orthonormal basis).
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Theorem 65. The eigenvalues of symmetric matrices are all real.

Proof. ∀ : A ∈ Rn×n with AT = A. Au = λu ⇒ uTAu = λuTu. uTu is a real number (norm of u).
uTAu is also a real number, as uTAu = uTAu = uTAu = uTATu = λuTu = λuTu = uTAu.

Theorem 66. The eigenvalues of skew-symmetric matrices are all imaginary or zero.

The proof is left as an exercise.

Fact 67. An orthogonal transformation preserves the value of the inner product of vectors a and b
in Rn. That is, for any a and b in Rn, orthogonal n × n matrix A, and u = Aa, v = Ab we have
〈u, v〉 = 〈a, b〉, as

uTv = aTATAb = aT b

Hence the transformation also preserves the length or 2-norm of any vector a in Rn given by ||a||2 =√
〈a, a〉.

Theorem 68. The determinant of an orthogonal matrix is either 1 or -1.

Proof. UUT = I ⇒ detU detUT = (detU)2 = 1

Theorem 69. The eigenvalues of an orthogonal matrix A are real or complex conjugates in pairs and
have absolute value 1.

Proof. Au = λu ⇒ ATAu = λATu ⇒ u = λATu ⇒ uTu = λuTATu ⇒ uTu = λuTA
T
u =

λλuTu⇒
(
|λ|2 − 1

)
uTu = 0

Properties of the special matrices

real matrix complex matrix properties
symmetric (A = AT ) Hermitian (A∗ = A) eigenvalues are all real

orthogonal
(ATA = AAT = I)

unitary
(A∗A = AA∗ = I)

eigenvalues have unity magnitude; Ax
maintains the 2-norm of x

skew-symmetric
(AT = −A)

skew-Hermitian
(A∗ = −A)

eigenvalues are all imaginary or zero

Based on the eigenvalue characteristics:

• symmetric and Hermitian matrices are like the real line in the complex domain

• skew-symmetric/Hermitian matrices are like the imaginary line

• orthogonal/unitary matrices are like the unit circle

Exercise 70 (Representation of matrices using special matrices). Many unitary matrices can be mapped
as functions of skew-Hermitian matrices as follows

U = (I − S)−1 (I + S)

where S 6= I. Show that if S is skew-Hermitian, then U is unitary.
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13.2 Symmetric eigenvalue decomposition (SED)

When A ∈ Rn×n has n distinct eigenvalues, we have seen the useful result of matrix diagonalization:

A = UΛU−1 = [u1, . . . , un]

 λ1

. . .

λn

 [u1, . . . , un]−1 (38)

where λi’s are the distinct eigenvalues associated to the eigenvector ui’s.
The inverse matrix in (38) can be painful to compute though.
The spectral theorem, aka symmetric eigenvalue decomposition theorem,6 significantly simplifies the

result when A is symmetric.

Theorem 71. ∀ : A ∈ Rn×n, AT = A, there always exist λi and ui, such that

A =
n∑
i=1

λiuiu
T
i = UΛUT (39)

where:7

• λi’s: eigenvalues of A

• ui: eigenvector associated to λi, normalized to have unity norms

• U = [u1, u2, · · · , un]T is an orthogonal matrix, i.e., UTU = UUT = I

• {u1, u2, · · · , un} forms an orthonormal basis

• Λ =

 λ1

. . .

λn


To understand the result, we show an important theorem first.

Theorem 72. ∀ : A ∈ Rn×n with AT = A, then eigenvectors of A, associated with different eigenval-
ues, are orthogonal.

Proof. Let Aui = λiui and Auj = λjuj. Then uTi Auj = uTi λjuj = λju
T
i uj. In the meantime,

uTi Auj = uTi A
Tuj = (Aui)

T uj = λiu
T
i uj. So λiuTi uj = λju

T
i uj. But λi 6= λj. It must be that

uTi uj = 0.
6Recall that the set of all the eigenvalues of A is called the spectrum of A. The largest of the absolute values of the

eigenvalues of A is called the spectral radius of A.
7uiu

T
i ∈ Rn×n is a symmetric dyad, the so-called outerproduct of ui and ui. It has the following properties:

• ∀ v ∈ Rn×1,
(
vvT

)
ij
= vivj . (Proof:

(
vvT

)
ij
= eTi

(
vvT

)
ej = vivj , where ei is the unit vector with all but the

ith elements being zero.)

• link with quadratic functions: q (x) = xT
(
vvT

)
x =

(
vTx

)2
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Theorem 71 now follows. If A has distinct eigenvalues, then U = [u1, u2, · · · , un]T is orthogonal if
we normalize all the eigenvectors to unity norm. If A has r(< n) distinct eigenvalues, we can choose
multiple orthogonal eigenvectors for the eigenvalues with none-unity multiplicities.

Observations:

• If we “walk along” uj, then

Auj =

(∑
i

λiuiu
T
i

)
uj = λjuju

T
j uj = λjuj (40)

where we used the orthonormal condition of uTi uj = 0 if i 6= j. This confirms that uj is an
eigenvector.

• {ui}ni=1 is a orthonormal basis ⇒∀x ∈ Rn, ∃ x =
∑

i αiui, where αi =< x, ui >. And we have

Ax = A
∑
i

αiui =
∑
i

αiAui =
∑
i

αiλiui =
∑
i

(αiλi)ui (41)

which gives the (intuitive) picture of the geometric meaning of Ax: decompose first x to the
space spanned by the eigenvectors of A, scale each components by the corresponding eigenvalue,
sum the results up, then we will get the vector Ax.

With the spectral theorem, next time you see a symmetric matrix A, you should immedi-
ately know that

• λi is real for all i

• associated with λi, we can always find a real eigenvector

• ∃ an orthonormal basis {ui}ni=1, which consists of the eigenvectors

• if A ∈ R2×2, then if you compute first λ1, λ2 and u1, you won’t need to go through the regular
math to get u2, but can simply solve for a u2 that is orthogonal to u1 with ‖u2‖ = 1.

Example 73. Consider the matrix A =

[
5
√

3√
3 7

]
. Computing the eigenvalues gives

det

[
5− λ

√
3√

3 7− λ

]
= 35− 12λ+ λ2 − 3 = (λ− 4) (λ− 8) = 0

⇒λ1 = 4, λ2 = 8

And we can know one of the eigenvectors from

(A− λ1I) t1 = 0⇒
[

1
√

3√
3 3

]
t1 = 0⇒ t1 =

[
−
√

3
2

1
2

]
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Note here we normalized t1 such that ||t1||2 = 1. With the above computation, we no more need to do
(A− λ2I) t2 = 0 for getting t2. Keep in mind that A here is symmetric, so has eigenvectors orthogonal
to each other. By direct observation, we can see that

x =

[ 1
2√
3

2

]
is orthogonal to t1 and ||x||2 = 1. So t2 = x.

Theorem 74 (Eigenvalues of symmetric matrices). If A = AT ∈ Rn×n, then the maximum eigenvalue
of A satisfies

λmax = max
x∈Rn, x6=0

xTAx

‖x‖2
2

(42)

λmin = min
x∈Rn, x6=0

xTAx

‖x‖2
2

(43)

Proof. Perform SED to get

A =
n∑
i=1

λiu
T
i ui

where {ui}ni=1 form a basis of Rn. Then any vector x ∈ Rn can be decomposed as

x =
n∑
i=1

αiui

Thus

max
x 6=0

xTAx

‖x‖2
2

= max
αi

(
∑

i αiui)
T∑

i λiαiui∑
i α

2
i

= max
αi

∑
i λiα

2
i∑

i α
2
i

= λmax

The proof for (43) is analogous and omitted.

13.3 Symmetric positive-definite matrices

Definition 75. A symmetric matrix P ∈ Rn×n is called positive-definite, written P � 0, if xTPx > 0
for all x (6= 0) ∈ Rn. P is called positive-semidefinite, written P � 0, if xTPx ≥ 0 for all x ∈ Rn

Definition 76. A symmetric matrix P ∈ Rn×n is called negative-definite, written P ≺ 0, if −P � 0,
i.e., xTPx < 0 for all x (6= 0) ∈ Rn. P is called negative-semidefinite, written P � 0, if xTPx ≤ 0
for all x ∈ Rn

When A and B have compatible dimensions, A � B means A−B � 0.
Positive-definite matrices can have negative entries, as shown in the next example.
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Example 77. The following matrix is positive-definite

P =

[
2 −1
−1 2

]
as P = P T and take any v = [x, y]T , we have

vTPv =

[
x
y

]T [
2 −1
−1 2

] [
x
y

]
= 2x2 + 2y2 − 2xy = x2 + y2 + (x+ y)2 ≥ 0

and the equality sign holds only when x = y = 0.

Conversely, matrices whose entries are all positive are not necessarily positive-definite.

Example 78. The following matrix is not positive-definite

A =

[
1 2
2 1

]
as [

1
−1

]T [
1 2
2 1

] [
1
−1

]
= −2 < 0

Theorem 79. For a symmetric matrix P , P � 0 if and only if all the eigenvalues of P are positive.

Proof. Since P is symmetric, we have

λmax (P ) = max
x∈Rn, x6=0

xTAx

‖x‖2
2

(44)

λmin (P ) = min
x∈Rn, x6=0

xTAx

‖x‖2
2

(45)

which gives
xTAx ∈

[
λmin||x||22, λmax||x||22

]
For x 6= 0, ||x||22 is always positive. It can thus be seen that xTAx > 0, x 6= 0⇔ λmin > 0.

Lemma. For a symmetric matrix P , P � 0 if and only if all the eigenvalues of P are none-negative.

Theorem. If A is symmetric positive definite, X is full column rank, then XTAX is positive definite.

Proof. Consider y
(
XTAX

)
y = xTAx, which is always positive unless x = 0. But X is full rank so

Xy = x = 0 if and only if y = 0. This proves XTAX is positive definite.

Fact. All principle submatrices of A are positive definite.

Proof. Use the last theorem. Take X = e1, X = [e1, e2], etc. Here ei is a column vector whose
ith-entry is 1 and all other entries are zero.
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Example 80. The following matrices are all not positive definite:[
−1 0
0 1

]
,

[
−1 1
1 2

]
,

[
2 1
1 −1

]
,

[
1 2
2 1

]
Positive-definite matrices are like positive real numbers. We can have the concept of square root of

positive-definite matrices.

Definition 81. Let P � 0. We can perform symmetric eigenvalue decomposition to obtain P = UDUT

where U is orthogonal with UUT = I and D is diagonal with all diagonal elements being none negative

D =


λ1 0 . . . 0

0 λ2

. . .
...

...
. . .

. . . 0
0 . . . 0 λn

 � 0

Then the square root of P , written P
1
2 , is defined as

P
1
2 = UD

1
2UT

where

D
1
2 =


√
λ1 0 . . . 0

0
√
λ2

. . .
...

...
. . .

. . . 0
0 . . . 0

√
λn


13.4 General positive-definite matrices

Definition 82. A general square matrix Q ∈ Rn×n is called positive-definite, written as Q � 0, if
xTQx > 0 ∀x 6= 0.

We have discussed the case when Q is symmetric. If not, recall that any real square matrix can be
decomposed as the sum of a symmetric matrix and a skew symmetric matrix:

Q =
Q+QT

2
+
Q−QT

2

where Q+QT

2
is symmetric.

Notice that xT Q−Q
T

2
x = xTQx−

(
xTQx

)T
= 0. So for a general square real matrix:

Q � 0⇔ Q+QT � 0

Example 83. The following matrices are positive definite but not symmetric[
1 1
0 1

]
,

[
1 0
1 1

]
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For complex matrices with Q = Q∗ = QR + jQI , we have

Q � 0⇔ x∗Qx > 0, ∀x 6= 0

⇔
(
xTR − jxTI

)
(QR + jQI) (xR + jxI) > 0

⇔
(
xR
xI

)T (
1
j

)(
QR QI

)( 1
j

)(
1
j

)T (
xR
xI

)
⇔
(
xR
xI

)T (
QR QI

−QI QR

)(
xR
xI

)
> 0

⇔ xTRQRxR − xTI QIxR + xTRQIxI + xTI QRxI > 0
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14 Singular value and singular value decomposition (SVD)

14.1 Motivation

Symmetric eigenvalue decomposition is great but many matrices are not symmetric. A general matrix
A may actually not even be square. Singular value decomposition is an important matrix decomposition
technique that works for arbitrary matrices.8

For a general none-square matrix A ∈ Cm×n, eigenvalues and eigenvectors are generalized to

Avj = σjuj (46)

Be careful about the dimensions: if m > n, we have

.

.

.
. . A . .

.

.

.



 v1 v2 . . . vn


︸ ︷︷ ︸

V

=


u1 u2 . . . un


︸ ︷︷ ︸

Û


σ1

σ2

. . .

σn


︸ ︷︷ ︸

Σ̂

It turns out that, if A has full column rank n, then we can find a V that is unitary (V V ∗ = V ∗V = I)
and a Û that has orthonormal columns. Hence

A = ÛΣ̂V ∗ (47)

14.2 SVD

(47) forms the so-called reduced singular value decomposition (SVD). The idea of a “full” SVD is as
follows. The columns of Û are n orthonormal vectors in the m-dimensional space Cm. They do not
form a basis for Cm unless m = n. We can add additional m − n orthonormal columns to Û and
augment it to a unitary matrix U . Now the matrix dimension has changed, Σ̂ needs to be augmented
to compatible dimensions as well. To maintain the equality (47), the newly added elements to Σ̂ are
set to zero.

Theorem 84. Let A ∈ Cm×n with rank r. Then we can find orthogonal matrices U ∈ Cm×m and
V ∈ Cn×n such that

A = UΣV ∗

8History of SVD: discovered between 1873 and 1889, independently by several pioneers; did not became widely known
in applied mathematics until the late 1960s, when it was shown that SVD can be computed effectively and used as the
basis for solving many problems.
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where

Σ ∈ Rm×n is diagonal
U ∈ Cm×m is unitary
V ∈ Cn×n is unitary

In addition, the diagonal entries σj of Σ are nonnegative and in nonincreasing order; that is, σ1 ≥ σ2 ≥
· · · ≥ σr > 0.

Proof. Notice that A∗A is positive semi-definite. Hence, A∗A has a full set of orthonormal eigenvectors;
its eigenvalues are real and nonnegative. Order these eigenvalues as

λ1 ≥ λ2 ≥ · · · ≥ λr > λr+1 = λr+2 = · · · = λn = 0

9Let {v1, . . . , vn} be an orthonormal choice of eigenvectors of A∗A corresponding to these eigenvalues:

A∗Avi = λivi

Then,
||Avi||2 = v∗iA

∗Avi = λiv
∗
i vi = λi

For i > r, it follows that Avi = 0.
For 1 ≤ i ≤ r, we have

A∗Avi = λivi

Recall (46), we define σi =
√
λi and get

Avi = σiui

A∗ui = σivi

For 1 ≤ i, j ≤ r, we have

〈ui, uj〉 = u∗iuj =
1

σiσj
v∗iA

∗Avj =
1

σiσj
λjv

∗
i vj =

σj
σi
v∗i vj =

{
1 i = j

0 i 6= j

Hence {u1, . . . , ur} is an orthonormal set of eigenvectors. Extending this set to form an orthonormal
basis for Cm gives

U =
[
u1, . . . , ur ur+1, . . . , um

]
For i ≤ r, we already have

Avi = σiui

9Fact: rank (A) = rank (A∗A). To see this, notice first, that rank (A) ≥ rank (A∗A) by definition of rank. Second,
A∗Ax = 0⇒ x∗A∗Ax = 0⇒ ||Ax|| = 0⇒ Ax = 0, hence rank (A) ≤ rank (A∗A).
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namely

A [v1, . . . vr] = [u1, . . . , ur]


σ1

σ2

. . .

σr



=
[
u1, . . . , ur ur+1, . . . , um

]


σ1

σ2

. . .

σr
0
...
0


For vr+1, . . . , we have already seen that Avr+1 = Avr+2 = · · · = 0, hence

A [v1, . . . vr|vr+1, . . . , vn]︸ ︷︷ ︸
n×n

=
[
u1, . . . , ur ur+1, . . . , um

]︸ ︷︷ ︸
m×m



σ1

. . .

σr
0

. . .

0
...
0


︸ ︷︷ ︸

m×n

⇒ A = UΣV ∗

Theorem 85. The range space of A is spanned by {u1, . . . , ur}. The null space of A is spanned by
{vr+1, . . . , vn}.

Theorem 86. The nonzero singular values of A are the square roots of the nonzero eigenvalues of
A∗A or AA∗.

Theorem 87. ||A||2 = σ1, i.e., the induced two norm of A is the maximum singular value of A.

The next important theorem can be easily proved via SVD.
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Theorem (Fundermental theory of linear algebra). Let A ∈ Rm×n. Then

R (A) +N
(
AT
)

= Rm

and
R (A)⊥N

(
AT
)

Proof. By singular value decomposition

A = UΣV T

AT = V ΣUT

Range of A is the first r columns of U , from the first equation; Null space of AT is the last m − r
columns of U , from the second equation.

New intuition of matrix vector operation With A = UΣV ∗, a new intuition for Ax = UΣV ∗x
is formed. Since V is unitary, it is norm-preserving, in the sense that V ∗x does not change the 2-norm
of the vector x. In other words, V ∗x only rotates x in Cn. The diagonal matrix Σ then functions to
scale (by its diagonal values) the rotated vector. Finally, U is another rotation in Cm.

14.3 Properties of singular values

Fact. Let A and B be matrices with compatible dimensions. The following are true
σ (A+B) ≤ σ (A) + σ (B)
σ (AB) ≤ σ (A)σ (B)

Proof. The first inequality comes from

σ (A+B) = max
v 6=0

||Av +Bv||2
||v||2

≤ max
v 6=0

||Av||2 + ||Bv||2
||v||2

The second inequality uses

σ (AB) = max
v 6=0

||ABv||2
||v||2

≤ max
v 6=0

||A||2||Bv||2
||v||2

14.4 Exercises

1. Compute the singular values of the following matrices

(a)

[
3
−2

]
, (b)

[
2

3

]
, (c)

 0 2
0 0
0 0

 , (d)

[
1 1
0 0

]
, (e)

[
1 1
1 1

]
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2. Show that if A is real, then it has a real SVD (i.e., U and V are both real).

3. For any matrix A ∈ Rn×m, construct

M =


n×n︷︸︸︷
0

n×m︷︸︸︷
A

AT︸︷︷︸
m×n

0︸︷︷︸
m×m

 ∈ R(n+m)×(n+m)

which satisfies
MT = M

M is Hermitian, and hence has real eigenvalues and eigenvectors:[
0 A
AT 0

] [
uj
vj

]
= σj

[
uj
vj

]
(48)

(a) Show that

i. vj is in the co-kernal (perpendicular to kernal/null space) of A and uj is in the range
of A.

ii. if σj and
[
uj
vj

]
form a eigen pair for M , then−σj and

[
uTj ,−vTj

]T also form an eigen

pair for M
iii. eigenvalues of M always appear in pairs that are symmetric to the imaginary axis.

(b) Use the results to show that, if

A =

[
1 2 4
1 4 32

]
then M must have eigenvalues that are equal to 0.

4. Suppose A ∈ Cm×m and has an SVD A = UΣV ∗. Find an eigenvalue decomposition of[
0 A∗

A 0

]
5. Worst input direction in matrix vector multiplications. Recall that any matrix defines a linear

transformation:
Mw = z

What is the worst input direction for the vector w? Here worst means: if we fix the input norm,
say ‖w‖ = 1, ‖z‖ will reach a maximum value (the worst case) for a specific input direction in
w.

(a) Show that the worst ||z|| is ||M || when ||w|| = 1.

(b) Provide procedures to obtain the w that gives the maximum ||z||, for the cases of 1 norm,
∞ norm, and 2 norm.
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