Eleven Tools in Feedback Control

Xu Chen

Department of Mechanical Engineering University of Washington

11 Tools in Feedback Control

Contents

- Basics: Arithmetic of LTI systems, Goals of feedback, Loop shaping, Tradeoffs
- Fundamental limitations
 - Bandwidth
 - Waterbed
 - Unstable zeros
 - Magnitude-phase relationship
- Practical control engineering
 - Sampling time
 - Delays
 - Time-frequency relationship

11 Tools in Feedback Control

Goals of feedback

Goals of feedback

Goals of feedback

Tradeoffs

Complementary Sensitivity Function:

$$T = PC(1 + PC)^{-1}$$
$$S + T = 1$$

Fundamental Constraint:

Loop shaping

High-gain feedback

High-gain feedback

11 Tools in Feedback Control

High-gain feedback

11 Tools in Feedback Control

#5

X. Chen

#5

Local high-gain feedback

Bode's Integral

Bode's Integral

Theorem. Let S(s) = 1/(1+L(s)). If L(s) and S(s) are both rational and stable. Then

$$\frac{1}{\pi} \int_0^\infty \ln |S(j\omega)| d\omega = \frac{-1}{2} k_s$$
$$k_s = \lim_{s \to \infty} sL(s)$$

11 Tools in Feedback Control

Bode's Integral

Theorem. Let S(s) = 1/(1+L(s)). If L(s) and S(s) are both rational and stable. Then

$$\frac{1}{\pi} \int_0^\infty \ln |S(j\omega)| d\omega = \frac{-1}{2} k_s$$
$$k_s = \lim_{s \to \infty} sL(s)$$

Special Case: If the relative degree of L(s) is larger than or equal to 2, then

$$\frac{1}{\pi} \int_0^\infty \ln |S(j\omega)| d\omega = 0$$

11 Tools in Feedback Control

Bandwidth limitation

#6

Hence it is inevitable to have the error-amplification region.

Waterbed effect: pushing down S in one region causes amplification in some other region.

Waterbed Effect

Waterbed Effect

General Bode's Integral

Theorem. Let S(s) = 1/(1+L(s)). If L(s) and S(s) are both rational, S(s) is stable, and L(s) has unstable or imaginary unstable poles $\{p_k\}_{k=1}^q$ Then

$$\frac{1}{\pi} \int_0^\infty \ln|S(j\omega)| d\omega = \sum_{k=1}^q p_k$$

Proof: complex analysis, analytic functions, Cauchy Integral.

^{#7} Limitations from unstable zeros

• Example: $P = sP_{else}$ \rightarrow constant inputs can't impact the output

^{#7} Limitations from unstable zeros

- Example: $P = sP_{else}$ \rightarrow constant inputs can't impact the output
- More consequences:
 - *S always* has magnitudes larger than one

Limitations from unstable zeros

- Example: $P = sP_{else}$ \rightarrow constant inputs can't impact the output
- More consequences:

#7

- *S always* has magnitudes larger than one:

$$P(\sigma_o) = 0 \qquad S(\sigma_o) = 1/(1 + 0 \times C(\sigma_o)) = 1$$

Closed-loop stability $\rightarrow S$ is analytic in the right-half plane maximum modulus theorem \rightarrow

$$\max_{\omega} |S(j\omega)| \ge |S(\sigma_o)| = 1$$

Limitations from unstable zeros

- Example: $P = sP_{else}$ \rightarrow constant inputs can't impact the output
- More consequences:
 - *S always* has magnitudes larger than one
 - Not able to perform accurate system ID
 - High-gain instability
 - Step responses can have initial undershoot

- etc

Resonance and anti-resonance

- Typical in mechanical systems.
- Usually identified experimentally.

Notch filters

Notch filtering: one common technique to handle resonances

Fundamental constraint in notch filtering: introduces phase delays to the system

Phase delays

Theorem (Bode's Phase Formula). *If L is a minimum-phase continuous-time transfer function, then its phase is uniquely defined by its gain, according to*

$$\angle L\left(j\omega\right) = \int_{-\infty}^{\infty} \frac{d\ln\left|L\left(e^{\nu}\omega\right)\right|}{d\nu} \psi\left(\nu\right) d\nu$$

where

$$\psi(\nu) = \frac{1}{\pi} \ln \frac{e^{|\nu|/2} + e^{-|\nu|/2}}{e^{|\nu|/2} - e^{-|\nu|/2}}.$$

where

Theorem (Bode's Phase Formula). *If L is a minimum-phase continuous-time transfer function, then its phase is uniquely defined by its gain, according to*

$$\angle L\left(j\omega\right) = \int_{-\infty}^{\infty} \frac{d\ln\left|L\left(e^{\nu}\omega\right)\right|}{d\nu} \psi\left(\nu\right) d\nu$$

Slope of magnitude response

$$\psi(\nu) = \frac{1}{\pi} \ln \frac{e^{|\nu|/2} + e^{-|\nu|/2}}{e^{|\nu|/2} - e^{-|\nu|/2}}$$

where

Theorem (Bode's Phase Formula). If *L* is a minimum-phase continuous-time transfer function, then its phase is uniquely defined by its gain, according to

$$\angle L\left(j\omega\right) = \int_{-\infty}^{\infty} \frac{d\ln\left|L\left(e^{\nu}\omega\right)\right|}{d\nu} \psi\left(\nu\right) d\nu$$

Slope of magnitude response

$$\psi(\nu) = \frac{1}{\pi} \ln \frac{e^{|\nu|/2} + e^{-|\nu|/2}}{e^{|\nu|/2} - e^{-|\nu|/2}}.$$

Approximately an impulse at 0

Theorem (Bode's Phase Formula). If L is a minimum-phase continuous-time transfer function, then its phase is uniquely defined by its gain, according to

$$\angle L\left(j\omega\right) = \int_{-\infty}^{\infty} \frac{d\ln\left|L\left(e^{\nu}\omega\right)\right|}{d\nu} \psi\left(\nu\right) d\nu$$

11 Tools in Feedback Control

Discrete-time plant delay

#9

X. Chen

Discrete-time plant delay

#9

X. Chen

^{#10}Bandwidth and rise time: practical application

Step response of a high-order closed-loop system

- Rule of thumb:
 - Sampling frequency $\approx 10 \sim 20$ bandwidth (in Hz)

- Rule of thumb:
 - Sampling frequency $\approx 10 \sim 20$ bandwidth (in Hz)

Sampling-time selection

Intuition: 20 = the number of letters in "sampling frequencies"

- Rule of thumb:
 - Sampling frequency $\approx 10 \sim 20$ bandwidth (in Hz)

Example:

Related active research field

- Flexible loop shaping
- Vibration rejection and motion control
- MIMO loop shaping
- Delay compensation
- Adaptive control
- Nonlinear control and breaking the waterbed effect

