Selective Model Inversion and Adaptive Disturbance Observer for Time-Varying Vibration Rejection on an Active-Suspension Benchmark

Abstract

This paper presents an adaptive control scheme for identifying and rejecting unknown and/or time-varying narrow-band vibrations. We discuss an idea of safely and adaptively inverting a (possibly non-minimum phase) plant dynamics at selected frequency regions, so that structured disturbances (especially vibrations) can be estimated and canceled from the control perspective. By taking advantage of the disturbance model in the design of special infinite-impulse-response (IIR) filters, we can reduce the adaptation to identify the minimum amount of parameters, achieve accurate parameter estimation under noisy environments, and flexibly reject the narrow-band disturbances with clear tuning intuitions. Evaluation of the algorithm is performed via simulation and experiments on an active-suspension benchmark.

Publication
European Journal of Control