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Abstract— This paper presents a least squares formulation
and a closed-form solution for identifying dynamical systems
using non-uniform data obtained under a coprime collaborative
sensing scheme. Specifically, the method combines measure-
ments from two slow output sensors with different sampling
rates to estimate the system’s dynamics. We provide the
theoretical foundation for developing advanced least-squares-
based system identification algorithms for cases where the
input-output data are sampled at different rates. Demonstrative
examples are provided to validate the proposed method, and to
show the identification beyond the Nyquist frequency.

I. INTRODUCTION

System identification from sampled data is an underpin-
ning for understanding and controlling dynamic systems.
Standard system identification algorithms require uniformly
sampled data usually collected at a consistent sampling rate
between the input and the output [1]. Non-uniform data, in
contrast, is thought to possess higher temporal resolutions,
which can help to alleviate or even remove the adverse effect
of aliasing when the average sampling rate falls below twice
the desired Nyquist frequency of the target dynamics [2].
However, non-uniform measurements pose a challenge for
most system identification algorithms, and it remains not
well understood how to perform system identification to
fully realize the benefits of non-uniform data. In this paper,
we propose a novel coprime collaborative sampling scheme
that systematically generates non-uniform measurements, to-
gether with a polynomial-transformation-based model repa-
rameterization technique that ultimately enables model iden-
tification beyond the conventional Nyquist limit. The main
objective is to optimize the efficacy of multiple sensors for
applications where the sensor speed is slow compared to the
monitored process, which is commonly referred to as mixed-
rate systems. By effectively managing sensors, the proposed
approach aims to address the limitation of existing methods
and enable previously infeasible applications in non-contact
sensing systems such as laser processing and vision-based
inspection.

Mixed-rate (MR) system identification has been discussed
over decades due to its various applications such as bat-
tery modeling, quadcopter dynamics modeling, and fault
detection [3]–[6]. From a signal processing perspective, one
may still be able to use single-rate system identification
algorithms to identify MR system models by matching
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Fig. 1. Illustration of the irregular and sparse measurements collected by
two sensors at different sampling rates (e.g., M = 2, N = 3). Parameter
estimation is only valid at instants of an integer multiple of MN .

the sampling rates through downsampling or upsampling
the collected measurements, which are widely used in the
industry. However, downsampling can lead to information
loss and potentially cause aliasing [7]. While upsampling
can introduce additional noise or artifacts into the signal,
potentially distorting or obscuring the true system dynamics
as the added samples are generated solely based on the
chosen interpolation method without direct knowledge of
the underlying system dynamics [8]. Even though they
enable the use of single-rate identification algorithms in
MR systems, neither guarantees accurate identification of
the full system dynamics. Instead of matching the sampling
rate, the polynomial transformation technique [9] offers an
alternative to directly identifying the system model, which
also provides the theoretical basis for the realization of the
utilization of multiple sensors in MR system identification.
Previously, Ding et al. [10] investigated collaborative sensing
strategies in reconstructing the continuous-time systems from
a discrete-time system subjected to irregular sampling rates,
which in some senses proved the feasibility of identifying
the system model with non-uniformly sampled data.

The proposed coprime collaborative sensing in this article
leverages two slow sensors of different sampling rates that
are systematically timed and processed for identifying system
dynamics at orders of speed beyond the individual sensors
(Fig. 1). Such a collaborating sampling maintains the indi-
vidual sensor’s uniform sampling routine while adding in-
formation beyond the individual sensor’s sensing capability,
leading to an overall non-uniform sampled data collection at
a greater temporal resolution.

Methodology wise, part of the system identification algo-
rithm is motivated by the polynomial transformation method
in MR system analysis. Two general approaches exist when
dealing with MR systems: the lifting technique [11], and the
polynomial transformation method [9]. The lifting technique
is a state-space approach that translates the MR system into a
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single-rate system [12], while the polynomial transformation
method enables the direct identification of the MR system
model by mathematically manipulating the characteristic
polynomial in the transfer-function domain. Intensive efforts
have been put into the first approach [13]–[15], while the
latter remains intriguing due to advantages in real-time
implementations. Based on the proposed coprime collabo-
rative sensing scheme, this paper introduces the design and
application of transformation polynomials to reparameterize
a candidate system model. Through reparameterization, the
general form of the MR system is obtained. Next, a least
squares optimization is formulated to obtain the intermediate
parameters of the reparameterized transfer function. Finally,
parameter post-processing is implemented to recover the fast
system model.

The remainder of this paper is organized as follows:
Section II introduces technical preliminaries. In Section III,
we present the least squares formulation in matrix form
and its closed-form solution under the proposed coprime
collaborative sensing scheme. A first-order and a second-
order system identification example are provided in Section
IV, and conclusions are made in Section V.

II. PRELIMINARIES

In this section, we first review the transfer function
approach for general system identification based on the
ARMA model. Then, we show the polynomial transforma-
tion method for a class of system identification problems
when the input and the output are sampled at different rates.

A. Transfer function approach for single-rate system identi-
fication

Consider a general stable ARMA model [16]

y(k) = G(q−1)u(k) =
q−dB(q−1)

A(q−1)
u(k) (1)

where d is an integer number representing the pure time
delay of the system (excluding a one-step intrinsic delay of
the discrete-time system), q−1 is the one-step delay operator,
and

A(q−1) = 1 + a1q
−1 + · · ·+ anaq

−na

B(q−1) = b1q
−1 + b2q

−2 + · · ·+ bnb
q−nb

are monic polynomials of q−1. We assume that the model
is irreducible (i.e., qnaA(q−1) and qnbB(q−1) are coprime).
Introduce

A∗(q−1) = a1 + a2q
−1 · · ·+ ana

q−na+1

B∗(q−1) = b1 + b2q
−1 + · · ·+ bnb

q−nb+1

where A∗(q−1) = q[A(q−1)− 1] and B∗(q−1) = qB(q−1).
Then, Eq. (1) can be rewritten as

y(k) =
q−d−1B∗(q−1)

1 + q−1A∗(q−1)
u(k) (2)

namely

(1 + q−1A∗(q−1))y(k) = q−d−1B∗(q−1)u(k)

or

y(k) =− a1y(k − 1)− a2y(k − 2)− · · · − ana
y(k − na)

+ b1u(k − d− 1) + · · ·+ bnb
u(k − d− nb)

In vector form
y(k) = θTϕ(k) (3)

where

ϕ(k) = [−y(k − 1),−y(k − 2), . . . ,−y(k − na),

u(k − d− 1), u(k − d− 2), . . . , u(k − d− nb)]
T

θ = [a1, a2, . . . , ana
, b1, b2, . . . , bnb

]T

B. Polynomial transformation for dual-rate system identifi-
cation

Consider a dual-rate system that has its output y(kLT )
sampled L times slower than its input u(kT ) where T is the
fundamental sampling period. Let T = 1 for simplicity in
the rest of the content. We first recognize the factorization

1− xL = (1− x)(1 + x+ x2 + · · ·+ xL−1) (4)

and the characteristic equation A(q−1) in its product form

A(q−1) ≜
na∏
i=1

(1− (λiq)
−1) (5)

where λi’s are the reciprocals of the poles of the system
model that needs to be identified, and na is the order of
the characteristic equation (i.e. the number of poles) of the
system. Define the transformation polynomial:

FL(q
−1) =

na∏
i=1

(1 + (λiq)
−1 + (λiq)

−2 + · · ·+ (λiq)
−L+1)

= 1 + f1q
−1 + · · ·+ fnaL−naq

−naL+na

Referring to Eq. (4), Eq. (5) satisfies

A(q−1)FL(q
−1) =

na∏
i=1

(1− (λiq)
−L)

where the order of the shift operator q becomes an integer
multiple of L. By doing so, we are able to manipulate the
order of the shift operator and then change the required data
for the identification process. By applying the same trans-
formation polynomial to B(q−1), Eq. (1) can be rewritten
as:

y(k) =
q−dB(q−1)FL(q

−1)

A(q−1)FL(q−1)
u(k) ≜

q−dBL(q
−1)

AL(q−L)
u(k)

where

AL(q
−L) = 1 + aL,1q

−L + aL,2q
−2L + · · ·+ aL,naq

−naL

BL(q
−1) = bL,1q

−1 + · · ·+ bL,na(L−1)+nb
q−na(L−1)−nb

For notational convenience, let κ = na(L − 1) + nb. The
system model can be re-written in the form of Eq. (2)

y(k) =
q−d−1B∗

L(q
−1)

1 + q−LA∗
L(q

−1)
u(k)
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where

A∗
L(q

−1) = aL,1 + aL,2q
−1 · · ·+ aL,naq

−naL+1

B∗
L(q

−1) = bL,1 + bL,2q
−1 + · · ·+ bL,κq

−κ+1

Therefore the output in a predictor-like structure can be
written as follows:

y(k) = θTLϕL(k)

where

ϕL(k) = [− y(k − L),−y(k − 2L), . . . ,−y(k − naL),

u(k − d− 1), u(k − d− 2), . . . , u(k − d− κ)]T

θL = [aL,1, aL,2, . . . , aL,na
, bL,1, bL,2, . . . , bL,κ ]

T

The model introduced in Eq. (3) cannot be identified when
the measurable data are {u(k), y(kL), k = 0, 1, 2, ...}. In
contrast to a single-rate regressor form, this model reparame-
terization selectively downsamples the observation space and
enables direct system identification using smaller amounts of
uniformed sampled data. The original system parameters can
be recovered from the reparameterized model by removing
the common factor from the numerator and denominator (i.e.
FL(q

−1)). Therefore, the fast model is identified from slow
measurements.

III. MODEL REPARAMETERIZATION FOR SYSTEM
IDENTIFICATION UNDER COLLABORATIVE SENSING

In order to use non-uniform output data to identify the
system dynamics, for the case with two sensors, we design
the transformation polynomials as follows

FM (q−1) =

na∏
i=1

(1 + (λiq)
−1 + · · ·+ (λiq)

−M−1)

FN (q−1) =

na∏
i=1

(1 + (λiq)
−1 + · · ·+ (λiq)

−N−1)

where M and N are coprime integers representing the ratios
between the input sampling rate and the sampling rates of
the fast and the slow sensors, respectively. Without loss of
generality, we assume N > M . If not, we simply swap and
rename the two sensors. M and N being coprime offers a
greater temporal resolution compared to non-coprime setups
where more measurements are overlapped. In Fig. 2 (c &
d), we see the non-coprime setup results in measurements
with a periodical pattern, while the coprime setup captures
much more information about the underlying dynamics of
the system.

Next, we combine two transformation polynomials and
apply an additional normalization (division by a factor of
2), which yields

FMN (q−1) =
1

2
[FM (q−1) + FN (q−1)] (6)

Obviously, the formulation can be easily extended to multiple
sensors as follows

F̂ (q−1) =
1

n
[

n∑
i=1

Fi(q
−1)] (7)

Multiplying the combined transformation polynomial Eq. (6)
to both the numerator and the denominator of the original
transfer function Eq. (1) yields

y(k) =
q−dB(q−1)FMN (q−1)

A(q−1)FMN (q−1)
u(k)

≜
q−dBMN (q−1)

AMN (q−M , q−N )
u(k)

In more details,

y(k) =
q−dBMN (q−1)

1
2 [A(q−1)FM (q−1) +A(q−1)FN (q−1)]

u(k)

where

A(q−1)FM (q−1) =

na∏
i=1

(1− (λiq)
−M )

= 1 + aM,1q
−M + · · ·+ aM,naq

−naM

A(q−1)FN (q−1) =

na∏
i=1

(1− (λiq)
−N )

= 1 + aN,1q
−N + · · ·+ aN,naq

−naN

After normalization, the characteristic equation of the repa-
rameterized transfer function becomes

A(q−1)FMN (q−1) = 1 +
aM,1

2
q−M + · · ·+ aM,na

2
q−naM

+
aN,1

2
q−N + · · ·+ aN,na

2
q−naN

Then, the reparameterized system model under the collabo-
rative sensing scheme can be written as

y(k) =
q−dBMN (q−1)

1 + q−M AM (q−M )
2 + q−N AN (q−M )

2

u(k)

where

BMN (q−1) = bMN,1q
−1 + bMN,2q

−2 + · · ·+ bMN,κq
−κ

AM (q−M ) = aM,1 + aM,2q
−M + · · ·+ aM,na

q−naM+M

AN (q−N ) = aN,1 + aN,2q
−N + · · ·+ aN,naq

−naN+N

Noting that κ = na(N −1)+nb. The above model provides

y(k) = −1

2
AM (q−M )y(k −M)− 1

2
AN (q−N )y(k −N)

+BMN (q−1)u(k)

or in a vector form

y(k) = θTMNϕMN (k) (8)
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where

ϕMN (k) =



− 1
2y(k −M)

− 1
2y(k − 2M)

...
− 1

2y(k − naM)
− 1

2y(k −N)
− 1

2y(k − 2N)
...

− 1
2y(k − naN)
u(k − d− 1)
u(k − d− 2)

...
u(k − d− κ)



, θMN =



aM,1

aM,2

...
aM,na

aN,1

aN,2

...
aN,na

bMN,1

bMN,2

...
bMN,κ


From Eq. (8), we see that if we wanted to estimate output at
time k, the output measurements at time k −M and k −N
have to be available. This only works when k is an integer
multiple of MN as shown in Fig. 1. With this in mind,
suppose we have the estimation of the parameter vector θ̂MN

at time k = iMN , a posterior output estimation will be

ŷ(iMN) = ϕT (iMN)θ̂(iMN)

i = 0, 1, 2, . . .

Consider the performance index

Jk =

k∑
i=1

e(iMN)2

=

k∑
i=1

[y(iMN)− ϕT
MN (iMN)θ̂MN (kMN)]2

For simplicity, we use ϕ and θ to represent ϕMN and θMN

in the remaining of this section. The summation in the
performance index can be expanded and rewritten in a vector
form as follows:

e(kMN)
e((k − 1)MN)

...
e(MN)

 =


y(kMN)

y((k − 1)MN)
...

y(MN)


︸ ︷︷ ︸

Yk

−

[
ϕ(kMN) ϕ((k − 1)MN) . . . ϕ(MN)

]︸ ︷︷ ︸
ΦT

k

θ̂(kMN)

hence

Jk = ||Yk − Φkθ̂(k)||2

= (θ̂T (k)ΦT
kΦkθ̂(k)− 2Y T

k ΦT
k θ̂(k) + Y T

k Yk)

The least squares solution targets to minimize the aforemen-
tioned performance index. Taking the partial derivative, we
have

∂Jk
∂θ

= 2ΦT
kΦkθ̂(k)− 2ΦkYk

Fig. 2. From top to bottom: (a) samples needed for single-rate system
identification algorithms. (b) samples needed when one slow sensor (e.g.
L = 7) is used. (c) samples colllected when two non-coprime sensors
(e.g.M = 6,N = 18) are used. (d) samples collected when two coprime
sensors (e.g. M = 7,N = 20) are collaboratively taking measurements.

Letting ∂Jk

∂θ = 0 yields the unique optimal solution:

θ̂(k)opt = (ΦkΦ
T
k )

−1ΦkYk (9)

We have thus obtained the least squares solution for the case
where two coprime sensors collaboratively sense the system
response.

IV. NUMERICAL EXAMPLE

A. 1st Order System:

For illustration purposes, consider the first-order system

B(q−1)

A(q−1)
=

1

1− (λq)−1

e.g.
=

1

1− 0.5q−1

where λ = 2 is the parameter to be identified.
Referring and comparing to the single-rate system model

Eq. (1), the first order system’s pure delay is d = 0; the order
of the denominator polynomial A(q−1) is na = 1; and the
order of the numerator polynomial B((q−1) is nb = 0.

Two sensors are used for sampling the system output
at different rates. One is M times slower than the input
sampling rate and the other is N times slower. For this
example, we assume M = 7 and N = 20.

Next, construct transformation polynomials as follows

FM (q−1) = 1 + (λq)−1 + · · ·+ (λq)−6

FN (q−1) = 1 + (λq)−1 + · · ·+ (λq)−6 + · · ·+ (λq)−19

Implement the normalization as shown in Eq. (6)

FMN (q−1) =
1

2
[FM (q−1) + FN (q−1)]

=1 + (λq)−1 + · · ·+ (λq)−6

+
1

2
(λq)−7 + · · ·+ 1

2
(λq)−19
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and applying the normalized transformation polynomial to
the system yields

y(k) =
B(q−1)FMN (q−1)

A(q−1)FMN (q−1)
u(k)

=
1 + (λq)−1 + · · ·+ (λq)−6 + · · ·+ 1

2 (λq)
−19

1− 1
2 (λq)

−7 − 1
2 (λq)

−20
u(k)

Re-writing in the predictor-like structure yields

y(k) =− 1

2
λ−7y(k − 7)− 1

2
λ−20y(k − 20)

+ u(k) + λ−1u(k − 1) + · · ·+ λ−6u(k − 6)

+
1

2
λ−7u(k − 7) + · · ·+ 1

2
λ−25u(k − 19)

or equivalently in a vector form:

y(k) =



λ−7

λ−20

λ−1

...
λ−6

λ−7

...
λ−19



T

︸ ︷︷ ︸
θT



− 1
2y(k − 7)

− 1
2y(k − 20)
u(k − 1)

...
u(k − 6)
1
2u(k − 7)

...
1
2u(k − 19)


︸ ︷︷ ︸

ϕ(k)

+u(k)

A pseudo-random binary sequence (PRBS) is used to ex-
cite the system. For evaluation purposes, the ground truth
full system response (not available to the proposed system
identification algorithm) is sampled at 1024 HZ, which is
the same as the input sampling frequency. The least squares
formation is as follows:

Yk =


y(k)

y(k − 140)
...

y(k − 140n)

−


u(k)

u(k − 140)
...

u(k − 140n)



Φk =



− 1
2y(k − 7) . . . − 1

2y(k − 7− 140n)
− 1

2y(k − 20) . . . − 1
2y(k − 20− 140n)

u(k − 1) . . . u(k − 1− 140n)
...

...
u(k − 6) . . . u(k − 6− 140n)
1
2u(k − 7) . . . 1

2u(k − 7− 140n)
...

...
1
2u(k − 19) . . . 1

2u(k − 19− 140n)


and the parameter vector is in the following form

θ̂T =
[
λ−7 λ−20 λ−1 λ−2 . . . λ−19

]
Therefore, the unique least squares solution can be found
using Eq. (9), and the final λ estimation is then obtained by
removing the greatest common factor between the denomi-
nator and numerator:

λ̂ = 2.0000

Fig. 3. Top: ground truth output with irregular and sparse sampling (M =
7, N = 20). Middle: the estimated output from the identified system model.
Bottom: relative error.

In Fig. 3. we plot the actual samples we used for the system
identification, the output estimation by using the identified
model, and the output estimation error. The comparison
between the real and identified system’s frequency response
is shown in Fig. 4. The Nyquist frequency of each output
sensor (i.e. 19.6 Hz and 73.1 Hz) is also marked out in Fig. 4.
The dynamics beyond the Nyquist frequency of each sensor
is observed to have been successfully extracted.

B. 2nd Order System:

The identification of a second-order system:

B(q−1)

A(q−1)
=

0.7047q−1

1− 1.125q−1 + 0.8129q−2

with pure delay d = 0; the order of the denominator poly-
nomial na = 2; and the order of the numerator polynomial
nb = 1 is provided under the same sensor setup (i.e. M = 7,
N = 20) and the same PRBS input signal sampled at 4.82
HZ. The system response is shown in Fig. 5. We observe
that the mode around 0.7Hz is beyond each sensor’s Nyquist
frequency but well identified.

V. CONCLUSIONS

The paper presents a least squares formulation and closed-
form solution for the coprime collaborative sensing scheme,
and illustrates its effectiveness through two system identi-
fication examples. Future work will include developing a
recursive-least-squares formulation under the coprime col-
laborative sensing and investigating criteria for sensor rate
selection. The proposed principle can be easily extended to
multiple sensor cases and slow-input-fast-output cases.
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